Electrochemical properties comparison of the polypyrrole nanotube and polyaniline nanofiber applied in supercapacitor

被引:29
作者
Liu, J. H. [1 ]
An, J. W. [1 ]
Ma, Y. X. [1 ]
Li, M. L. [1 ]
Ma, R. B. [1 ]
Yu, M. [1 ]
Li, S. M. [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBE; MATERIALS SCIENCE; COMPOSITE FILMS; GRAPHENE; NANOCOMPOSITE; CAPACITANCE; ELECTRODES; PERFORMANCE; FABRICATION; POLYMER;
D O I
10.1051/epjap/2012110368
中图分类号
O59 [应用物理学];
学科分类号
摘要
To exploit the potential application of the conductive polymers in incorporating with carbon-based materials, polypyrrole (PPY) nanotube and polyaniline (PANI) nanofiber were synthesized and the electrochemical properties were compared. The morphology, texture and chemical structure of PPY and PANI were tested employing SEM, TEM, FTIR and XPS. The results of electrochemical tests demonstrate that the specific capacitance of PPY nanotube is as high as 463 F/g at a current density of 0.3 A/g, much higher than that of PANI nanofiber (243 F/g). Furthermore, at a current density of 0.8 A/g, the capacitance of PPY nanotube is 172 F/g, higher than that of PANI nanofiber (104 F/g). Additionally, after the long-term charge-discharge test at a current density of 1.5 A/g, the preserved capacitance of PPY nanotube is still higher than that of PANI nanofiber (106.5 F/g vs. 75 F/g). The EIS measurement illustrates that the PPY nanotube shows lower contact interface resistance and shorter ion diffusion path than the PANI nanofiber. It suggests that the PPY nanotube is a promising material to be applied in supercapacitor rather than the PANI nanofiber, because of its extended internal cavity surface area and pore volume.
引用
收藏
页数:9
相关论文
共 43 条
[1]   High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole [J].
An, KH ;
Jeon, KK ;
Heo, JK ;
Lim, SC ;
Bae, DJ ;
Lee, YH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1058-A1062
[2]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[3]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[4]   XPS STUDIES OF CHEMICALLY SYNTHESIZED POLYPYRROLE-HALOGEN CHARGE-TRANSFER COMPLEXES [J].
CHAN, HSO ;
MUNRO, HS ;
DAVIES, C ;
KANG, ET .
SYNTHETIC METALS, 1988, 22 (04) :365-370
[5]   Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties [J].
Chiou, Nan-Rong ;
Lui, Chunmeng ;
Guan, Jingjiao ;
Lee, L. James ;
Epstein, Arthur J. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :354-357
[6]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[7]  
Deng MG, 2005, ACTA CHIM SINICA, V63, P1127
[8]   Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition [J].
Fang, Yueping ;
Liu, Jianwei ;
Yu, Deok Jin ;
Wicksted, James P. ;
Kalkan, Kaan ;
Topal, C. Ozge ;
Flanders, Bret N. ;
Wu, Judy ;
Li, Jun .
JOURNAL OF POWER SOURCES, 2010, 195 (02) :674-679
[9]   Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor [J].
Gao, Zan ;
Wang, Jun ;
Li, Zhanshuang ;
Yang, Wanlu ;
Wang, Bin ;
Hou, Mengjie ;
He, Yang ;
Liu, Qi ;
Mann, Tom ;
Yang, Piaoping ;
Zhang, Milin ;
Liu, Lianhe .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3509-3516
[10]  
Hughes M, 2002, ADV MATER, V14, P382, DOI 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO