Symplectic partitioned Runge-Kutta methods with the phase-lag property

被引:4
作者
Monovasilis, Th [1 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, GR-52100 Kastoria, Greece
关键词
Partitioned-Runge-Kutta methods; Symplecticness; Minimum phase-lag; Phase-fitting; Schrodinger equation; Hamiltonian problems; TRIGONOMETRICALLY-FITTED METHODS; NUMERICAL-SOLUTION; ORDER; INTEGRATION; SCHEME; IVPS;
D O I
10.1016/j.amc.2012.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work specially tuned symplectic partitioned Runge-Kutta (SPRK) methods with minimum phase-lag and phase fitted have been considered. The general framework for constructing SPRK methods with minimum phase-lag is given. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:9075 / 9084
页数:10
相关论文
共 50 条
  • [1] Symplectic Partitioned Runge-Kutta methods with minimal phase-lag
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1251 - 1254
  • [2] Symplectic Partitioned Runge-Kutta Methods with Minimum Phase Lag - Case of 5 Stages
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 698 - +
  • [3] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [4] TWO NEW PHASE-FITTED SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (12): : 1343 - 1355
  • [5] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [6] Phase fitted symplectic partitioned Runge-Kutta methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (07) : 1736 - 1746
  • [7] Two-derivative Runge-Kutta methods with increased phase-lag and dissipation order for the Schrodinger equation
    Fang, Yonglei
    Zhang, Yanwei
    Wang, Ping
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (07) : 1924 - 1934
  • [8] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [9] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [10] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185