Lattice computation of the electromagnetic contributions to kaon and pion masses

被引:29
作者
Basak, S. [1 ]
Bazavov, A. [2 ,3 ]
Bernard, C. [4 ]
DeTar, C. [5 ]
Levkova, L. [5 ]
Freeland, E. [6 ]
Gottlieb, Steven [7 ]
Torok, A. [7 ,14 ]
Heller, U. M. [8 ]
Laiho, J. [9 ]
Osborn, J. [10 ]
Sugar, R. L. [11 ]
Toussaint, D. [12 ]
Van de Water, R. S. [13 ]
Zhou, R. [13 ]
机构
[1] NISER Bhubaneswar, Sch Phys Sci, Bhubaneswar 752050, Orissa, India
[2] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[5] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[6] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA
[7] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[8] Amer Phys Soc, One Res Rd, Ridge, NY 11961 USA
[9] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[10] Argonne Natl Lab, ALCF, Argonne, IL 60439 USA
[11] Univ Calif Santa Barbara, Phys Dept, Santa Barbara, CA 93106 USA
[12] Univ Arizona, Phys Dept, Tucson, AZ 85721 USA
[13] Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA
[14] ThermoFisher Sci, Hillsboro, OR 97124 USA
关键词
3-DIMENSIONAL THIRRING MODEL; DOMAIN-WALL; GENERATION; FERMIONS;
D O I
10.1103/PhysRevD.99.034503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a lattice calculation of the electromagnetic (EM) effects on the masses of light pseudoscalar mesons. The simulations employ 2 + 1 dynamical flavors of asqtad QCD quarks and quenched photons. Lattice spacings vary from approximate to 0.12 fm to approximate to 0.045 fm. We compute the quantity epsilon, which parametrizes the corrections to Dashen's theorem for the K+-K-0 EM mass splitting, as well as epsilon(K0), which parametrizes the EM contribution to the mass of the K-0 itself. An extension of the nonperturbative EM renormalization scheme introduced by the BMW group is used in separating EM effects from isospin-violating quark mass effects. We correct for leading finite-volume effects in our realization of lattice electrodynamics in chiral perturbation theory, and remaining finite-volume errors are relatively small. While electroquenched effects are under control for epsilon, they are estimated only qualitatively for epsilon(K0) and constitute one of the largest sources of uncertainty for that quantity. We find epsilon = 0.78(1)(stat)((+8)(-11))(syst) and epsilon(K0) = 0.035(3)(stat)(20)(syst). We then use these results on 2 + 1 + 1 flavor pure QCD highly improved staggered quark (HISQ) ensembles and find m(u)/m(d) = 0.4529(48)(stat)((+150)(-67))(syst).
引用
收藏
页数:53
相关论文
共 34 条
[1]   Fermions at Finite Density in 2+1 Dimensions with Sign-Optimized Manifolds [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[2]  
[Anonymous], ARXIVHEPLAT9605021
[3]  
[Anonymous], 1990, UTTG4090
[4]   LATTICE FERMIONS IN ODD DIMENSIONS [J].
BURDEN, C ;
BURKITT, AN .
EUROPHYSICS LETTERS, 1987, 3 (05) :545-552
[5]   Quantum critical behavior in three dimensional lattice Gross-Neveu models [J].
Chandrasekharan, Shailesh ;
Li, Anyi .
PHYSICAL REVIEW D, 2013, 88 (02)
[6]   Fermion Bags, Duality, and the Three Dimensional Massless Lattice Thirring Model [J].
Chandrasekharan, Shailesh ;
Li, Anyi .
PHYSICAL REVIEW LETTERS, 2012, 108 (14)
[7]   Optimal lattice domain-wall fermions [J].
Chiu, TW .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[8]   Critical flavor number in the three dimensional Thirring model [J].
Christofi, Stavros ;
Hands, Simon ;
Strouthos, Costas .
PHYSICAL REVIEW D, 2007, 75 (10)
[9]   The RHMC algorithm for 2 flavours of dynamical staggered fermions [J].
Clark, MA ;
Kennedy, AD .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 :850-852
[10]   The three-dimensional Thirring model for Nf=4 and Nf=6 [J].
Del Debbio, L ;
Hands, SJ .
NUCLEAR PHYSICS B, 1999, 552 (1-2) :339-362