Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions

被引:16
作者
He, Y. [1 ]
Tao, Y. B. [1 ]
Zhao, C. Y. [1 ]
Yu, X. K. [1 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn, Minist Educ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Photovoltaic-thermoelectric; Phase change materials; Power generation efficiency; Power density; Performance optimization; PERFORMANCE ANALYSIS; HYBRID; GENERATOR; DESIGN; FEASIBILITY; IMPROVEMENT; COLLECTORS; SIMULATION; GEOMETRY; BEHAVIOR;
D O I
10.1016/j.renene.2022.09.129
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phase change material (PCM) as highly efficient temperature control material has been used in terrestrial photovoltaic-thermoelectric (PV-TE) coupling system to achieve higher power generation efficiency. However, the mass increase results from addition of PCM limits its application in space system. In present paper, a two-dimensional model for PV-PCM-TE coupling system was developed to investigate the energy transfer and conversion performance under space conditions. Firstly, the suitable PCM was selected, both the pure PCM and its metal foam composite PCM (MFCPCM) are used. Then, performance comparison for PV-TE, PV-PCM-TE and PV-MFCPCM-TE systems were performed. The results show PCM can significantly enhance the total efficiency, but causes power density dramatically decreasing. The average total efficiencies for PV-TE, PV-PCM-TE and PVMFCPCM-TE are 29.50%, 30.50% and 30.61%, and the corresponding average power density are 30.34 W/kg, 22.39 W/kg and 21.20 W/kg, respectively. After that, an orthogonal experiment was designed to reveal the effects of structure parameters on power generation efficiency and power density of PV-MFCPCM-TE system. The optimum geometric parameters to achieve the best power generation efficiency and power density were derived. The results show that after optimization, the average total efficiency and power density of PV-MFCPCM-TE are 30.83% and 31.35 W/kg, both of them are higher than those of the traditional PV-TE system (29.50% and 30.34 W/kg). The present work is beneficial for the application of PV-PCM-TE system in space conditions.
引用
收藏
页码:320 / 333
页数:14
相关论文
共 50 条
  • [41] Numerical analysis of battery thermal management system coupling with low-thermal-conductive phase change material and liquid cooling
    Niu, Junyi
    Xie, Ning
    Zhong, Yi
    Gao, Xuenong
    Fang, Yutang
    Zhang, Zhengguo
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [42] Optimization of the placement and area allocation for the installation of the phase change material on swimming pool roofs under diverse climatic conditions
    Jahangir, Mohammad Hossein
    Lashgari, Sina
    Kheirani, Sarina
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [43] Development of a hybrid battery thermal management system coupled with phase change material under fast charging conditions
    Lee, Seunghoon
    Han, Ukmin
    Lee, Hoseong
    ENERGY CONVERSION AND MANAGEMENT, 2022, 268
  • [44] Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies
    Zhang, Chenyu
    Wang, Ning
    Yang, Qiguo
    Xu, Hongtao
    Qu, Zhiguo
    Fang, Yuan
    RENEWABLE ENERGY, 2022, 196 : 1392 - 1405
  • [45] Energy and exergy analysis of a switchable solar photovoltaic/ thermal-phase change material system with thermal regulation strategies
    Zhang, Chenyu
    Wang, Ning
    Yang, Qiguo
    Xu, Hongtao
    Qu, Zhiguo
    Fang, Yuan
    RENEWABLE ENERGY, 2022, 196 : 1392 - 1405
  • [46] Experimental investigation for a hybrid aluminum oxide nanofluid-phase change material photovoltaic thermal system based on outdoor test conditions
    Emara, Kareem
    Aliwa, Hossam
    Abdellatif, Osama Ezza
    Abd El-hameed, H. M.
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [47] Experimental and numerical analysis of phase change material-based photovoltaic/thermal system with dual-parallel cooling channels
    Yuan, Fuchun
    Yin, Zhiqiang
    Zhao, Ning
    Hu, Yuyang
    Wang, Jiangjiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 286
  • [48] Heat transfer and energy performance analysis of photovoltaic thermal system using functionalized carbon nanotubes enhanced phase change material
    Rajamony, Reji Kumar
    Pandey, A. K.
    Samykano, M.
    Paw, Johnny Koh Siaw
    Kareri, Tareq
    Laghari, Imtiaz Ali
    Tyagi, V. V.
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [49] Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones
    Lu, Yao
    Aldawood, Faisal Khaled
    Hu, Wanyu
    Ma, Yuxin
    Kchaou, Mohamed
    Zhang, Chengjun
    Yang, Xinpeng
    Yang, Ruitong
    Qi, Zitong
    Li, Dong
    SUSTAINABILITY, 2023, 15 (23)
  • [50] Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery
    Wu, Gang
    Liu, Feng
    Li, Sijie
    Luo, Na
    Liu, Zhiqiang
    Li, Yuqaing
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (02) : 707 - 730