Quasi-distributions for arbitrary non-commuting operators

被引:2
作者
Ben-Benjamin, J. S. [1 ]
Cohen, L. [2 ,3 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] CUNY Hunter Coll, New York, NY 10021 USA
[3] CUNY, Grad Ctr, New York, NY 10021 USA
关键词
Quantum quasi probability distribution; Wigner distribution; Arbitrary operators; Phase space distribution; OBTAINING JOINT REPRESENTATIONS; TIME-FREQUENCY REPRESENTATIONS; CHARGE-DISTRIBUTIONS; QUANTUM-MECHANICS; GENERAL-APPROACH; SIGNAL ANALYSIS; LOCAL VALUES; ENERGY;
D O I
10.1016/j.physleta.2020.126393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new approach for obtaining quantum quasi-probability distributions, P(alpha, beta), for two arbitrary operators, alpha and beta, where a and p are the corresponding c-variables. We show that the quantum expectation value of an arbitrary operator can always be expressed as a phase space integral over alpha and beta, where the integrand is a product of two terms: One dependent only on the quantum state, and the other only on the operator. In this formulation, the concepts of quasi-probability and correspondence rule arise naturally in that simultaneously with the derivation of the quasi-distribution, one obtains the generalization of the concept of correspondence rule for arbitrary operators. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1951, Quantum Theory
[3]  
[Anonymous], 2001, Quantum Optics in Phase Space
[4]  
Bader R. F. W., 1969, INT J QUANTUM CHEM, V3, P327, DOI [DOI 10.1002/QUA.560030308, 10.1002/qua.560030308]
[5]   VIRIAL PARTITIONING OF CHARGE DISTRIBUTIONS AND PROPERTIES OF DIATOMIC HYDRIDES [J].
BADER, RFW ;
BEDDALL, PM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (02) :305-315
[6]   VIRIAL FIELD RELATIONSHIP FOR MOLECULAR CHARGE DISTRIBUTIONS AND SPATIAL PARTITIONING OF MOLECULAR PROPERTIES [J].
BADER, RFW ;
BEDDALL, PM .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (07) :3320-+
[7]   ON JOINT DISTRIBUTIONS FOR ARBITRARY VARIABLES [J].
BARANIUK, RG ;
COHEN, L .
IEEE SIGNAL PROCESSING LETTERS, 1995, 2 (01) :10-12
[8]   From von Neumann to Wigner and beyond [J].
Ben-Benjamin, J. S. ;
Cohen, L. ;
Scully, M. O. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 227 (15-16) :2171-2182
[9]   Working in phase-space with Wigner and Weyl [J].
Ben-Benjamin, Jonathan S. ;
Kim, Moochan B. ;
Schleich, Wolfgang P. ;
Case, William B. ;
Cohen, Leon .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8)
[10]   QUASI-PROBABILITY DISTRIBUTION FOR SPIN-1/2 PARTICLES [J].
CHANDLER, C ;
COHEN, L ;
LEE, C ;
SCULLY, M ;
WODKIEWICZ, K .
FOUNDATIONS OF PHYSICS, 1992, 22 (07) :867-878