InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium-sulfur batteries

被引:8
|
作者
Zhao, Tongkun [1 ,2 ]
Chen, Junwu [1 ]
Dai, Kaiqing [3 ]
Yuan, Menglei [1 ,2 ]
Zhang, Jingxian [1 ,2 ]
Li, Shuwei [1 ]
Liu, Zhanjun [4 ]
He, Hongyan [1 ]
Yang, Chao [1 ,2 ]
Zhang, Guangjin [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Cent South Univ, Sch Mech & Elect Engn, Changsha 410083, Peoples R China
[4] Chinese Acad Sci, Inst Coal Chem, CAS Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[5] Chem & Chem Engn Guangdong Lab, Shantou 515031, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Bidirectional catalyst; Polysulfide shuttle; Redox kinetics; InOOH nanoparticles; SEPARATOR; ELECTROCATALYSIS; STRATEGY; MEDIATOR; SHELL;
D O I
10.1016/j.jcis.2021.12.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries with the prominent advantages are greatly expected to be the attractive alternatives in the next-generation energy-storage systems. However, the practical success of Li-S batteries suffers from the shuttle effect and depressed redox kinetics of polysulfides. Herein, for the first time, InOOH nanoparticles are employed as a potent catalytic additive in sulfur electrode to overcome these issues. As demonstrated by the theoretical and experimental results, the strong interactions between the InOOH nanoparticles and sulfur species enable the effective adsorption of polysulfides. More significantly, InOOH nanoparticles not only effectively expedite the reduction of sulfur during the discharge process, but also dramatically accelerate the oxidation of Li2S during the charge process, presenting the marvelous bidirectional catalytic effects. Benefited from these distinctive superiorities, the cells with InOOH nanoparticles harvest an excellent capacity retention of 69.5% over 500 cycles at 2C and a commendable discharge capacity of 891 mAh g1under a high-sulfur loading of 5.0 mg cm2. The detailed investigations in this work provide a novel insight to ameliorate the Li-S electrochemistry by the bidirec-tional catalyst for high-performance Li-S batteries. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 426
页数:9
相关论文
共 50 条
  • [31] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [32] Synergistic Construction of Efficient Heterostructure Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Wang, Jun
    Zou, Xiuyang
    Meng, Wentong
    Song, Lina
    Xu, Wei
    Zhang, Kejun
    Liu, Quan
    Chen, Jun
    Hou, Yang
    Lu, Jianguo
    Gao, Xiang
    Cheng, Dangguo
    Ren, Yongyuan
    Zhan, Xiaoli
    Zhang, Qinghua
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15392 - 15400
  • [33] Targeted Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Nazir, Aqsa
    Pathak, Anil
    Hamal, Dambar
    Awadallah, Osama
    Motevalian, Saeme
    Claus, Ana
    Drozd, Vadym
    El-Zahab, Bilal
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)
  • [34] Efficient Regulation of Polysulfides by Anatase/Bronze TiO2 Heterostructure/Polypyrrole Composites for High-Performance Lithium-Sulfur Batteries
    Liu, Jing
    Liu, Yong
    Li, Tengfei
    Liang, Longlong
    Wen, Sifan
    Zhang, Yue
    Liu, Guilong
    Ren, Fengzhang
    Wang, Guangxin
    MOLECULES, 2023, 28 (11):
  • [35] Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for High-Performance Lithium-Sulfur Batteries
    Li, Mengyuan
    Fu, Kun
    Wang, Zhixuan
    Cao, Chaochao
    Yang, Jingwen
    Zhai, Qinghong
    Zhou, Zheng
    Ji, Jiawei
    Xue, Yanming
    Tang, Chengchun
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (72) : 17567 - 17573
  • [36] Carbon-Based Hybrid Interlayer to Anchor the Shuttling of Polysulfides for High-Performance Lithium-Sulfur Batteries
    Rani, Poonam
    Kumar, Krishna S.
    Pathak, Anil D.
    Sharma, Chandra S.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) : 8294 - 8302
  • [37] Ultrathin bismuth nanosheets as an efficient polysulfide catalyst for high performance lithium-sulfur batteries
    Xu, Hongfei
    Yang, Shubin
    Li, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) : 149 - 157
  • [38] A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for High-Performance Lithium-Sulfur Batteries
    Wang, Wei
    Xi, Kai
    Li, Bowen
    Li, Haojie
    Liu, Sheng
    Wang, Jianan
    Zhao, Hongyang
    Li, Huanglong
    Abdelkader, Amor M.
    Gao, Xueping
    Li, Guoran
    ADVANCED ENERGY MATERIALS, 2022, 12 (19)
  • [39] Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium-sulfur batteries
    Qu H.
    Ju J.
    Chen B.
    Xue N.
    Du H.
    Han X.
    Zhang J.
    Xu G.
    Yu Z.
    Wang X.
    Cui G.
    Cui, Guanglei (cuigl@qibebt.ac.cn), 2018, Royal Society of Chemistry (06) : 23720 - 23729
  • [40] Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium-sulfur batteries
    Qu, Hongtao
    Ju, Jiangwei
    Chen, Bingbing
    Xue, Nan
    Du, Huiping
    Han, Xiaoqi
    Zhang, Jianjun
    Xu, Gaojie
    Yu, Zhe
    Wang, Xiaogang
    Cui, Guanglei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) : 23720 - 23729