An extension of a theorem of Serrin to graphs in warped products

被引:16
作者
Dajczer, M [1 ]
Ripoll, J [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
constant mean curvature graph; warped product;
D O I
10.1007/BF02922192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we extend a well known theorem of J. Serrin about existence and uniqueness of graphs of constant mean curvature in Euclidean space to a broad class of Riemannian manifolds. Our result also generalizes several others proved recently and includes the new case of Euclidean "rotational" graphs with constant mean curvature.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 18 条
[1]   EHRESMANN CONNECTIONS FOR FOLIATIONS [J].
BLUMENTHAL, RA ;
HEBDA, JJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (04) :597-611
[2]   NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .5. THE DIRICHLET PROBLEM FOR WEINGARTEN HYPERSURFACES [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (01) :47-70
[3]  
doCarmo M. P., 1976, Differential geometry of curves and surfaces
[4]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[5]   Killing fields, mean curvature, translation maps [J].
Fornari, S ;
Ripoll, J .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) :1385-1403
[6]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[7]  
GUIO E, IN PRESS COMMUN PURE
[8]  
HOFFMAN D, IN PRESS T AM MATH S
[9]   Existence of constant mean curvature graphs in hyperbolic space [J].
López, R ;
Montiel, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (02) :177-190
[10]   APPLICATION OF SECOND VARIATION TO SUBMANIFOLD THEORY [J].
MOORE, JD .
DUKE MATHEMATICAL JOURNAL, 1975, 42 (01) :191-193