The thermodynamic limit and black hole entropy in the area ensemble

被引:10
作者
Fernando Barbero G, J. [1 ]
Villasenor, Eduardo J. S. [1 ,2 ]
机构
[1] CSIC, Inst Estructura Mat, Serrano 123, Madrid 28006, Spain
[2] Univ Carlos III Madrid, Inst Gregorio Millan, Grp Modelizac & Simulac Numer, Leganes 28911, Spain
关键词
ISOLATED HORIZONS; QUANTUM GEOMETRY; RADIATION;
D O I
10.1088/0264-9381/28/21/215014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the thermodynamic limit in the canonical area ensemble used in loop quantum gravity to model quantum black holes. The computation of the thermodynamic limit is the rigorous way to obtain a smooth entropy from the counting entropy given by a direct determination of the number of microstates compatible with macroscopic quantities (the energy in standard statistical mechanics or the area in the framework presented here). As we will show in specific examples the leading behavior of the smoothed entropy for large horizon areas is the same as the counting entropy but the subleading contributions differ. This is important because these corrections determine the concavity or convexity of the entropy as a function of the area.
引用
收藏
页数:15
相关论文
共 44 条
[1]   Detailed black hole state counting in loop quantum gravity [J].
Agullo, Ivan ;
Barbero G, J. Fernando ;
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW D, 2010, 82 (08)
[2]   Combinatorics of the SU(2) black hole entropy in loop quantum gravity [J].
Agullo, Ivan ;
Fernando Barbero G, J. ;
Borja, Enrique F. ;
Diaz-Polo, Jacobo ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW D, 2009, 80 (08)
[3]   Black hole state counting in loop quantum gravity:: A number-theoretical approach [J].
Agullo, Ivan ;
Barbero G., J. Fernando ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[4]   Black hole state degeneracy in loop quantum gravity [J].
Agullo, Ivan ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique .
PHYSICAL REVIEW D, 2008, 77 (10)
[5]  
[Anonymous], 1999, Adv. Theor. Math. Phys, DOI DOI 10.4310/ATMP.1999.V3.N3.A1
[6]   Quantum horizons and black-hole entropy: inclusion of distortion and rotation [J].
Ashtekar, A ;
Engle, J ;
Van den Broeck, C .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (04) :L27-L34
[7]   Isolated horizons: a generalization of black hole mechanics [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :L1-L7
[8]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[9]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[10]   Isolated and dynamical horizons and their applications [J].
Ashtekar A. ;
Krishnan B. .
Living Reviews in Relativity, 2004, 7 (1)