Effective Carbon Pores to Improve the Electrochemical Performance of Phosphorus as an Anode for Sodium Ion Batteries

被引:5
作者
Komine, Yuki [1 ]
Urita, Koki [1 ]
Notohara, Hiroo [1 ]
Moriguchi, Isamu [1 ]
机构
[1] Nagasaki Univ, Grad Sch Engn, Nagasaki 8528521, Japan
关键词
phosphorus; nanoporous carbon; reaction space; sodium ion battery; nanocomposite material; anode material; RED PHOSPHORUS; SNO2; NANOCRYSTALLITES; NANOTUBE COMPOSITE; SODIATION; CHOICE; OXIDE;
D O I
10.1021/acsaem.1c02605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose here that carbon pores provide key reaction sites for stable electrochemical reactions in phosphorus sodium ion batteries (SIBs). Phosphorus showing a high theoretical capacity (2596 mA h/g) due to a three-electron reaction with sodium ions is a remarkable negative material for SIBs. However, both low electrical conductivity of phosphorus and the capacity fading due to a large volume change during the charge-discharge process lead to a low reaction efficiency. The phosphorus introduced into relatively large mesoporous or macroporous carbons showed a high capacity of 2445 mA h/g at the first charge process, whereas capacities are no more than 1100 mA h/g in microporous or small mesoporous carbons in which the cyclability is also poor. This result clearly indicates that the carbon pores with a pore size close to or above 50 nm are effective reaction spaces for stabilization of the alloying-dealloying reaction of phosphorus with sodium ions.
引用
收藏
页码:13841 / 13846
页数:6
相关论文
共 35 条
[1]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[2]   Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries [J].
Fang, Shan ;
Bresser, Dominic ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[3]   Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries [J].
Gao, Rui-Min ;
Zheng, Zi-Jian ;
Wang, Peng-Fei ;
Wang, Cao-Yu ;
Ye, Huan ;
Cao, Fei-Fei .
ENERGY STORAGE MATERIALS, 2020, 30 :9-26
[4]   Electrochemical intercalation of sodium in graphite [J].
Ge, Pascal ;
Fouletier, Mireille .
Solid State Ionics, 1988, 28-30 :1172-1175
[5]   High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery [J].
Kamiyama, Azusa ;
Kubota, Kei ;
Nakano, Takeshi ;
Fujimura, Shun ;
Shiraishi, Soshi ;
Tsukada, Hidehiko ;
Komaba, Shinichi .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :135-140
[6]   Recent progress on sodium ion batteries: potential high-performance anodes [J].
Li, Li ;
Zheng, Yang ;
Zhang, Shilin ;
Yang, Jianping ;
Shao, Zongping ;
Guo, Zaiping .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) :2310-2340
[7]   Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode [J].
Li, Meng ;
Feng, Na ;
Liu, Mengmeng ;
Cong, Zifeng ;
Sun, Jiangman ;
Du, Chunhua ;
Liu, Quanbin ;
Pu, Xiong ;
Hu, Weiguo .
SCIENCE BULLETIN, 2018, 63 (15) :982-989
[8]   Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage [J].
Li, Wei-Jie ;
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
NANO LETTERS, 2013, 13 (11) :5480-5484
[9]   Confined Amorphous Red Phosphorus in MOF-Derived N-Doped Microporous Carbon as a Superior Anode for Sodium-Ion Battery [J].
Li, Weihan ;
Hu, Shuhe ;
Luo, Xiangyu ;
Li, Zhongling ;
Sun, Xizhen ;
Li, Minsi ;
Liu, Fanfan ;
Yu, Yan .
ADVANCED MATERIALS, 2017, 29 (16)
[10]   Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode [J].
Lim, Chek-Hai ;
Huang, Tzu-Yang ;
Shao, Pei-Sian ;
Chien, Jen-Hao ;
Weng, Yu-Ting ;
Huang, Hsin-Fu ;
Hwang, Bing Joe ;
Wu, Nae-Lih .
ELECTROCHIMICA ACTA, 2016, 211 :265-272