The Lidskii-Mirsky-Wielandt theorem - additive and multiplicative versions

被引:30
作者
Li, CK [1 ]
Mathias, R [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
D O I
10.1007/s002110050397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a simple matrix splitting technique to give an elementary new proof of the Lidskii-Mirsky-Wielandt Theorem and to obtain a multiplicative analog of the Lidskii-Mirsky-Wielandt Theorem, which we argue is the fundamental bound in the study of relative perturbation theory for eigenvalues of Hermitian matrices and singular values of general matrices. We apply our bound to obtain numerous bounds on the matching distance between the eigenvalues and singular values of matrices. Our results strengthen and generalize those in the literature.
引用
收藏
页码:377 / 413
页数:37
相关论文
共 20 条
[1]  
AMIRMOEZ N, 1990, EXTREME PROPERTIES L
[2]  
[Anonymous], 1996, Matrix Analysis
[3]  
Bhatia R, 1987, PITMAN RES NOTES MAT, V162, pviii+129
[4]   JACOBIS METHOD IS MORE ACCURATE THAN QR [J].
DEMMEL, J ;
VESELIC, K .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1204-1245
[5]   RELATIVE PERTURBATION TECHNIQUES FOR SINGULAR-VALUE PROBLEMS [J].
EISENSTAT, SC ;
IPSEN, ICF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1972-1988
[6]  
EISENSTAT SC, 1997, 9716 TR N CAR STAT C
[7]  
GELFAND LM, 1950, IZV AKAD NAUK SSSR M, V14, P239
[8]  
Horn R. A., 2013, Matrix analysis, Vsecond
[9]  
Horn R. A., 1986, Matrix analysis
[10]  
Ipsen I. C. F., 1998, Acta Numerica, V7, P151, DOI 10.1017/S0962492900002828