A new bio-inspired optimisation algorithm: Bird Swarm Algorithm

被引:323
|
作者
Meng, Xian-Bing [1 ,2 ]
Gao, X. Z. [3 ]
Lu, Lihua [4 ,5 ]
Liu, Yu [2 ]
Zhang, Hengzhen [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai, Peoples R China
[2] Chengdu Green Energy & Green Mfg R&D Ctr, Chengdu, Peoples R China
[3] Aalto Univ, Dept Elect Engn & Automat, Sch Elect Engn, Aalto, Finland
[4] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[5] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou, Peoples R China
关键词
bird swarms; swarm intelligence; social behaviours; social interactions; Bird Swarm Algorithm; optimisation; GROUP-SIZE; HOUSE SPARROWS; PRODUCER; ADVANTAGES; PREDATION; VIGILANCE; FLOCKS; TIME; RISK;
D O I
10.1080/0952813X.2015.1042530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed.
引用
收藏
页码:673 / 687
页数:15
相关论文
共 50 条
  • [1] A New Bio-inspired Algorithm: Chicken Swarm Optimization
    Meng, Xianbing
    Liu, Yu
    Gao, Xiaozhi
    Zhang, Hengzhen
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 86 - 94
  • [2] A new bio-inspired algorithm: Chicken swarm optimization
    Meng, Xianbing
    Liu, Yu
    Gao, Xiaozhi
    Zhang, Hengzhen
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8794 : 86 - 94
  • [3] A bio-inspired evolutionary algorithm: allostatic optimisation
    Osuna-Enciso, Valentin
    Cuevas, Erik
    Oliva, Diego
    Sossa, Humberto
    Perez-Cisneros, Marco
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2016, 8 (03) : 154 - 169
  • [4] Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
    Wang, Gai-Ge
    Deb, Suash
    Coelho, Leandro dos Santos
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 12 (01) : 1 - 22
  • [5] Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems
    Wang G.-G.
    Deb S.
    Dos Santos Coelho L.
    Wang, Gai-Ge (gaigewang@163.com), 2018, Inderscience Enterprises Ltd. (12) : 1 - 22
  • [6] Biased Eavesdropping Particles: A Novel Bio-inspired Heterogeneous Particle Swarm Optimisation Algorithm
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [7] Spatial Macroscopic Models of a Bio-Inspired Robotic Swarm Algorithm
    Hamann, Heiko
    Woern, Heinz
    Crailsheim, Karl
    Schmickl, Thomas
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 1415 - +
  • [8] A New Bio-Inspired Social Spider Algorithm
    Singh, Dharmpal
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2021, 12 (01) : 79 - 93
  • [9] Parameter Extraction of Solar Photovoltaic Modules Using a Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm
    Vais, Ram Ishwar
    Sahay, Kuldeep
    Chiranjeevi, Tirumalasetty
    Devarapalli, Ramesh
    Knypinski, Lukasz
    SUSTAINABILITY, 2023, 15 (10)
  • [10] Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
    Kaur, Satnam
    Awasthi, Lalit K.
    Sangal, A. L.
    Dhiman, Gaurav
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 90 (90)