APPROXIMATE BIPROJECTIVITY AND φ-BIFLATNESS OF CERTAIN BANACH ALGEBRAS

被引:8
作者
Sahami, A. [1 ,2 ]
Pourabbas, A. [2 ]
机构
[1] Ilam Univ, Fac Basic Sci, Dept Math, POB 69315-516, Ilam, Iran
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Beurling algebras; Segal algebras; approximate biprojectivity; phi-biflat; SEGAL ALGEBRAS; AMENABILITY; CONTRACTIBILITY;
D O I
10.4064/cm6459-11-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of the paper, we investigate the approximate biprojectivity of some Banach algebras related to the locally compact groups. We show that a Segal algebra S(G) is approximate biprojective if and only if G is compact. Also for every continuous weight w, we show that L-1 (G, w) is approximate biprojective if and only if G is compact, provided that w(g) >= 1 for every g is an element of G. In the second part, we study phi-biflatness of some Banach algebras, where 0 is a character. We show that if S(G) is phi(0)-biflat, then G is an amenable group, where phi(0) is the augmentation character on S(G). Finally, we show that the phi-biflatness of L-1(G)** implies the amenability of G.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 21 条
  • [1] CHARACTER AMENABILITY AND CONTRACTIBILITY OF ABSTRACT SEGAL ALGEBRAS
    Alaghmandan, Mahmood
    Nasr-Isfahani, Rasoul
    Nemati, Mehdi
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 274 - 281
  • [2] [Anonymous], 1964, Bull. Soc. Math. France, DOI DOI 10.24033/BSMF.1607
  • [3] [Anonymous], 1972, MEM AM MATH SOC
  • [4] Approximate and pseudo-amenability of various classes of Banach algebras
    Choi, Y.
    Ghahramani, F.
    Zhang, Y.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (10) : 3158 - 3191
  • [5] Dales HG, 2005, MEM AM MATH SOC, V177, P1
  • [6] Pseudo-amenable and pseudo-contractible Banach algebras
    Ghahramani, F.
    Zhang, Y.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 : 111 - 123
  • [7] Amenability and weak amenability of second conjugate Banach algebras
    Ghahramani, F
    Loy, RJ
    Willis, GA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (05) : 1489 - 1497
  • [8] Helemskii A. Y., 1989, The Homology of Banach and Topological Algebras
  • [9] Hewitt E., 1963, Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der mathematischen Wissenschaften, V115
  • [10] ON φ-INNER AMENABLE BANACH ALGEBRAS
    Jabbari, A.
    Abad, T. Mehdi
    Abadi, M. Zaman
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 122 (01) : 1 - 10