Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions

被引:18
作者
Fusco, Roberta [1 ]
Di Bernardo, Elio [1 ]
Piccirillo, Adele [2 ]
Rubulotta, Maria Rosaria [3 ]
Petrosino, Teresa [3 ]
Barretta, Maria Luisa [3 ]
Raso, Mauro Mattace [3 ]
Vallone, Paolo [3 ]
Raiano, Concetta [3 ]
Di Giacomo, Raimondo [4 ]
Siani, Claudio [4 ]
Avino, Franca [4 ]
Scognamiglio, Giosue [5 ]
Di Bonito, Maurizio [5 ]
Granata, Vincenza [3 ]
Petrillo, Antonella [3 ]
机构
[1] Igea SpA, Med Oncolody Div, I-80013 Naples, Italy
[2] Univ Napoli Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[3] Ist Nazl Tumori IRCCS Fdn G Pascale, Radiol Div, I-80131 Naples, Italy
[4] Ist Nazl Tumori IRCCS Fdn G Pascale, Senol Surg Div, I-80131 Naples, Italy
[5] Ist Nazl Tumori IRCCS Fdn G Pascale, Pathol Div, I-80131 Naples, Italy
关键词
contrast-enhanced mammography; magnetic resonance imaging; image enhancement; contrast media; radiomics; artificial intelligence; SPECTRAL MAMMOGRAPHY; DIAGNOSTIC PERFORMANCE; MR-IMAGES; DCE-MRI; CANCER; CLASSIFICATION; PREDICTION; SELECTION; FEATURES; PATTERN;
D O I
10.3390/curroncol29030159
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. Methods: Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. Results: Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Conclusions: Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.
引用
收藏
页码:1947 / 1966
页数:20
相关论文
共 64 条
[1]   Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network [J].
Abdolmaleki, P ;
Buadu, LD ;
Naderimansh, H .
CANCER LETTERS, 2001, 171 (02) :183-191
[2]   Textural Kinetics: A Novel Dynamic Contrast-Enhanced (DCE)-MRI Feature for Breast Lesion Classification [J].
Agner, Shannon C. ;
Soman, Salil ;
Libfeld, Edward ;
McDonald, Margie ;
Thomas, Kathleen ;
Englander, Sarah ;
Rosen, Mark A. ;
Chin, Deanna ;
Nosher, John ;
Madabhushi, Anant .
JOURNAL OF DIGITAL IMAGING, 2011, 24 (03) :446-463
[3]   Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions Intraindividual Comparison With Dynamic Contrast-Enhanced Magnetic Resonance Imaging [J].
Baltzer, Pascal A. T. ;
Bickel, Hubert ;
Spick, Claudio ;
Wengert, Georg ;
Woitek, Ramona ;
Kapetas, Panagiotis ;
Clauser, Paola ;
Helbich, Thomas H. ;
Pinker, Katja .
INVESTIGATIVE RADIOLOGY, 2018, 53 (04) :229-235
[4]   CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors [J].
Benedetti, Giulia ;
Mori, Martina ;
Panzeri, Marta Maria ;
Barbera, Maurizio ;
Palumbo, Diego ;
Sini, Carla ;
Muffatti, Francesca ;
Andreasi, Valentina ;
Steidler, Stephanie ;
Doglioni, Claudio ;
Partelli, Stefano ;
Manzoni, Marco ;
Falconi, Massimo ;
Fiorino, Claudio ;
De Cobelli, Francesco .
RADIOLOGIA MEDICA, 2021, 126 (06) :745-760
[5]   Digital breast tomosynthesis (DBT): recommendations from the Italian College of Breast Radiologists (ICBR) by the Italian Society of Medical Radiology (SIRM) and the Italian Group for Mammography Screening (GISMa) [J].
Bernardi, Daniela ;
Belli, Paolo ;
Benelli, Eva ;
Brancato, Beniamino ;
Bucchi, Lauro ;
Calabrese, Massimo ;
Carbonaro, Luca A. ;
Caumo, Francesca ;
Cavallo-Marincola, Beatrice ;
Clauser, Paola ;
Fedato, Chiara ;
Frigerio, Alfonso ;
Galli, Vania ;
Giordano, Livia ;
Rossi, Paolo Giorgi ;
Golinelli, Paola ;
Morrone, Doralba ;
Mariscotti, Giovanna ;
Martincich, Laura ;
Montemezzi, Stefania ;
Naldoni, Carlo ;
Paduos, Adriana ;
Panizza, Pietro ;
Pediconi, Federica ;
Querci, Fiammetta ;
Rizzo, Antonio ;
Saguatti, Gianni ;
Tagliafico, Alberto ;
Trimboli, Rubina M. ;
Zappa, Marco ;
Zuiani, Chiara ;
Sardanelli, Francesco .
RADIOLOGIA MEDICA, 2017, 122 (10) :723-730
[6]  
Bruce P. C., 2020, Practical statistics for data scientists: 50+ essential concepts using R and Python, VSecond
[7]   Recommendations for breast imaging follow-up of women with a previous history of breast cancer: position paper from the Italian Group for Mammography Screening (GISMa) and the Italian College of Breast Radiologists (ICBR) by SIRM [J].
Bucchi, Lauro ;
Belli, Paolo ;
Benelli, Eva ;
Bernardi, Daniela ;
Brancato, Beniamino ;
Calabrese, Massimo ;
Carbonaro, Luca A. ;
Caumo, Francesca ;
Cavallo-Marincola, Beatrice ;
Clauser, Paola ;
Fedato, Chiara ;
Frigerio, Alfonso ;
Galli, Vania ;
Giordano, Livia ;
Golinelli, Paola ;
Mariscotti, Giovanna ;
Martincich, Laura ;
Montemezzi, Stefania ;
Morrone, Doralba ;
Naldoni, Carlo ;
Paduos, Adriana ;
Panizza, Pietro ;
Pediconi, Federica ;
Querci, Fiammetta ;
Rizzo, Antonio ;
Saguatti, Gianni ;
Tagliafico, Alberto ;
Trimboli, Rubina M. ;
Zuiani, Chiara ;
Sardanelli, Francesco .
RADIOLOGIA MEDICA, 2016, 121 (12) :891-896
[8]   Radiomic analysis of the optic nerve at the first episode of acute optic neuritis: an indicator of optic nerve pathology and a predictor of visual recovery? [J].
Cellina, Michaela ;
Pirovano, Marta ;
Ciocca, Matteo ;
Gibelli, Daniele ;
Floridi, Chiara ;
Oliva, Giancarlo .
RADIOLOGIA MEDICA, 2021, 126 (05) :698-706
[9]   A synthetic neighborhood generation based ensemble learning for the imbalanced data classification [J].
Chen, Zhi ;
Lin, Tao ;
Xia, Xin ;
Xu, Hongyan ;
Ding, Sha .
APPLIED INTELLIGENCE, 2018, 48 (08) :2441-2457
[10]   An update in musculoskeletal tumors: from quantitative imaging to radiomics [J].
Chianca, Vito ;
Albano, Domenico ;
Messina, Carmelo ;
Vincenzo, Gabriele ;
Rizzo, Stefania ;
Del Grande, Filippo ;
Sconfienza, Luca Maria .
RADIOLOGIA MEDICA, 2021, 126 (08) :1095-1105