Quantum criticality in many-body parafermion chains

被引:1
|
作者
Lahtinen, Ville [1 ]
Mansson, Teresia [2 ]
Ardonne, Eddy [3 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Royal Inst Technol KTH, Sch Engn Sci, Dept Theoret Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
[3] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
来源
SCIPOST PHYSICS CORE | 2021年 / 4卷 / 02期
基金
瑞典研究理事会;
关键词
INVARIANT PARTITION-FUNCTIONS; MAJORANA FERMIONS; SPIN-CHAIN; SYMMETRY; SPECTRUM; MODEL;
D O I
10.21468/SciPostPhysCore.4.2.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct local generalizations of 3-state Potts models with exotic critical points. We analytically show that these are described by non-diagonal modular invariant partition functions of products of Z(3) parafermion or u (1)(6) conformal field theories (CFTs). These correspond either to non-trivial permutation invariants or block diagonal invariants, that one can understand in terms of anyon condensation. In terms of lattice parafermion operators, the constructed models correspond to parafermion chains with many-body terms. Our construction is based on how the partition function of a CFT depends on symmetry sectors and boundary conditions. This enables to write the partition function corresponding to one modular invariant as a linear combination of another over different sectors and boundary conditions, which translates to a general recipe how to write down a microscopic model, tuned to criticality. We show that the scheme can also be extended to construct critical generalizations of k-state clock type models.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] On Many-Body Localization for Quantum Spin Chains
    Imbrie, John Z.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (05) : 998 - 1048
  • [2] Lee-Yang theory of criticality in interacting quantum many-body systems
    Kist, Timo
    Lado, Jose L.
    Flindt, Christian
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [3] Criticality in translation-invariant parafermion chains
    Li, Wei
    Yang, Shuo
    Tu, Hong-Hao
    Cheng, Meng
    PHYSICAL REVIEW B, 2015, 91 (11):
  • [4] Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
    Valdez, Marc Andrew
    Shchedrin, Gavriil
    Heimsoth, Martin
    Creffield, Charles E.
    Sols, Fernando
    Carr, Lincoln D.
    PHYSICAL REVIEW LETTERS, 2018, 120 (23)
  • [5] Quench dynamics of isolated many-body quantum systems
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [6] Randomness of Eigenstates of Many-Body Quantum Systems
    Sun, Li-Zhen
    Nie, Qingmiao
    Li, Haibin
    ENTROPY, 2019, 21 (03):
  • [7] Quantum geometry of correlated many-body states
    Hassan, S. R.
    Shankar, R.
    Chakrabarti, Ankita
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [8] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [9] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [10] Many-body probes for quantum features of spacetime
    Chevalier, Hadrien
    Kwon, Hyukjoon
    Khosla, Kiran E.
    Pikovski, Igor
    Kim, M. S.
    AVS QUANTUM SCIENCE, 2022, 4 (02):