THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH UNCERTAINTY AND A ONE-DIMENSIONAL ASYMPTOTIC PRESERVING METHOD

被引:31
作者
Zhu, Yuhua [1 ]
Jin, Shi [1 ,2 ,3 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
[2] MOE LSEC, Dept Math, Inst Nat Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Vlasov-Poisson-Fokker-Planck system; uncertainty quantification; asymptotic preserving; polynomial chaos; stochastic Galerkin; FIELD;
D O I
10.1137/16M1090028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a stochastic asymptotic preserving (s-AP) scheme for the Vlasov-Poisson-Fokker-Planck system in the high field regime with uncertainty based on the generalized polynomial chaos stochastic Galerkin framework (gPC-SG). We first prove that, for a given electric field with uncertainty, the regularity of initial data in the random space is preserved by the analytical solution at a later time, which allows us to establish the spectral convergence of the gPC-SG method. We follow the framework developed in [S. Jin and L. Wang, Acta Math. Sci., 31 (2011), pp. 2219-2232] to numerically solve the resulting system in one space dimension and show formally that the fully discretized scheme is s-AP in the high field regime. Numerical examples are given to validate the accuracy and s-AP properties of the proposed method.
引用
收藏
页码:1502 / 1529
页数:28
相关论文
共 38 条
[21]   Green's Function and the Pointwise Behaviors of the Vlasov-Poisson-Fokker-Planck System [J].
Zhong, Mingying .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) :205-236
[22]   A LOCAL SENSITIVITY AND REGULARITY ANALYSIS FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH MULTI-DIMENSIONAL UNCERTAINTY AND THE SPECTRAL CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD [J].
Zhu, Yuhua .
NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (04) :677-707
[23]   DIFFUSION LIMIT AND THE OPTIMAL CONVERGENCE RATE OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
Zhong, Mingying .
KINETIC AND RELATED MODELS, 2022, 15 (01) :1-26
[24]   GREEN'S FUNCTION AND THE POINTWISE BEHAVIORS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
钟明溁 .
Acta Mathematica Scientia, 2023, (01) :205-236
[25]   HYPOCOERCIVITY AND UNIFORM REGULARITY FOR THE VLASOV POISSON FOKKER PLANCK SYSTEM WITH UNCERTAINTY AND MULTIPLE SCALES [J].
Jin, Shi ;
Zho, Yuhua .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) :1790-1816
[26]   A local meshless method for solving multi-dimensional Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems arising in plasma physics [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
ENGINEERING WITH COMPUTERS, 2017, 33 (04) :961-981
[27]   Homogenization and diffusion approximation of the Vlasov-Poisson-Fokker-Planck system: A relative entropy approach [J].
Addala, Lanoir ;
El Ghani, Najoua ;
Tayeb, Mohamed Lazhar .
ASYMPTOTIC ANALYSIS, 2021, 121 (3-4) :401-422
[28]   The model reduction of the Vlasov-Poisson-Fokker-Planck system to the Poisson-Nernst-Planck system via the Deep Neural Network Approach [J].
Lee, Jae Yong ;
Jang, Jin Woo ;
Hwang, Hyung Ju .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) :1803-1846
[29]   L2-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov-Poisson-Fokker-Planck System [J].
Addala, Lanoir ;
Dolbeault, Jean ;
Li, Xingyu ;
Tayeb, M. Lazhar .
JOURNAL OF STATISTICAL PHYSICS, 2021, 184 (01)
[30]   DIFFUSIVE LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK MODEL: QUANTITATIVE AND STRONG CONVERGENCE RESULTS [J].
Blaustein, Alain .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) :5464-5482