Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis

被引:5
作者
Krueger, Andries J. [1 ]
Kerres, Jochen [2 ,3 ]
Bessarabov, Dmitri [1 ]
Krieg, Henning M. [2 ]
机构
[1] North West Univ, Fac Engn, DST HySA Infrastruct Ctr Competence, Potchefstroom, South Africa
[2] North West Univ, Fac Nat Sci, Focus Area Chem Resource Beneficiat, Potchefstroom, South Africa
[3] Univ Stuttgart, Inst Chem Proc Engn, D-70199 Stuttgart, Germany
关键词
SO2; electrolysis; F6PBI blend proton exchange membranes; Covalently cross-linked; Ionically cross-linked; Voltage stepping; Long term operation; MEMBRANE FUEL-CELL; HYDROGEN-PRODUCTION; SULFUR CYCLE; DURABILITY; WATER;
D O I
10.1016/j.ijhydene.2015.05.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetra-fluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 degrees C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115 (R)) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm(-2). Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8788 / 8796
页数:9
相关论文
共 14 条
[1]   WESTINGHOUSE SULFUR CYCLE FOR THERMOCHEMICAL DECOMPOSITION OF WATER [J].
BRECHER, LE ;
SPEWOCK, S ;
WARDE, CJ .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1977, 2 (01) :7-15
[2]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[3]  
Elvington MC, 2010, J POWER SOURCES, V39
[4]   Hybrid sulfur cycle flowsheets for hydrogen production using high-temperature gas-cooled reactors [J].
Gorensek, Maximilian B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) :12725-12741
[5]  
Gorensek MB, 2008, INT J HYDROGEN ENERG, V34, P1
[6]  
Grigoriev SA, 2014, INT J HYDROGEN ENERG
[7]   Evaluation of MEA manufacturing parameters using EIS for SO2 electrolysis [J].
Krueger, Andries J. ;
Krieg, Henning M. ;
van der Merwe, Jan ;
Bessarabov, Dmitri .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (32) :18173-18181
[8]   High temperature proton exchange membranes based on polybenzimidazoles for fuel cells [J].
Li, Qingfeng ;
Jensen, Jens Oluf ;
Savinell, Robert F. ;
Bjerrum, Niels J. .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (05) :449-477
[9]   Comparison of ionically and ionical-covalently cross-linked polyaromatic membranes for SO2 electrolysis [J].
Peach, Retha ;
Krieg, Henning M. ;
Krueger, Andries J. ;
van der Westhuizen, Derik ;
Bessarabov, Dmitri ;
Kerres, Jochen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) :28-40
[10]   H2SO4 stability of PBI-blend membranes for SO2 electrolysis [J].
Schoeman, H. ;
Krieg, H. M. ;
Kruger, A. J. ;
Chromik, A. ;
Krajinovic, K. ;
Kerres, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) :603-614