Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings

被引:5
作者
Rajala, T. [1 ]
Zapadinskaya, A. [1 ]
Zurcher, T. [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
基金
瑞士国家科学基金会; 芬兰科学院;
关键词
Dimension distortion; Sobolev mappings; Mappings of finite distortion; FINITE DISTORTION; CONDITION-N; INTEGRABILITY; DERIVATIVES; REGULARITY;
D O I
10.1016/j.jmaa.2011.05.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate how the integrability of the derivatives of Orlicz-Sobolev mappings defined on open subsets of R(n) affect the sizes of the images of sets of Hausdorff dimension less than n. We measure the sizes of the image sets in terms of generalized Hausdorff measures. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:468 / 477
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1971, PRINCETON MATH SER
[2]  
[Anonymous], 1955, Continuous Transformations in Analysis
[3]   Optimal regularity for planar mappings of finite distortion [J].
Astala, Kari ;
Gill, James T. ;
Rohde, Steffen ;
Saksman, Eero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :1-19
[4]   INTEGRABILITY FOR THE JACOBIAN OF ORIENTATION PRESERVING MAPPINGS [J].
BREZIS, H ;
FUSCO, N ;
SBORDONE, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 115 (02) :425-431
[5]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions
[6]   Mappings of finite distortion: the degree of regularity [J].
Faraco, D ;
Koskela, P ;
Zhong, X .
ADVANCES IN MATHEMATICS, 2005, 190 (02) :300-318
[7]  
GEHRING FW, 1973, J LOND MATH SOC, V6, P504
[8]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[9]  
GRECO L, 1995, INDIANA U MATH J, V44, P305
[10]  
Hajlasz P, 2008, MICH MATH J, V56, P687