The Randic index and the diameter of graphs

被引:7
|
作者
Yang, Yiting [2 ]
Lu, Linyuan [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Randic index; Diameter; MOLECULAR CONNECTIVITY;
D O I
10.1016/j.disc.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Randic index R(G) of a graph G is defined as the sum of 1/root d(u)d(v) over all edges uv of G, where d(u) and d(v) are the degrees of vertices u and v. respectively. Let D(G) be the diameter of G when G is connected. Aouchiche et al. (2007)[1] conjectured that among all connected graphs G on n vertices the path P-n achieves the minimum values for both R(G)/D(G) and R(G) - D(G). We prove this conjecture completely. In fact, we prove a stronger theorem: If G is a connected graph, then R(G) - 1/2D(G) >= root 2 - 1, with equality if and only if G is a path with at least three vertices. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1333 / 1343
页数:11
相关论文
共 50 条
  • [31] THE MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN DIAMETER
    Zhong, Lingping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 429 - 442
  • [32] On the Randic index
    Delorme, C
    Favaron, O
    Rautenbach, D
    DISCRETE MATHEMATICS, 2002, 257 (01) : 29 - 38
  • [33] Complete solution to a conjecture on the Randic index of triangle-free graphs
    Li, Xueliang
    Liu, Jianxi
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6322 - 6324
  • [34] On Harmonic Index and Diameter of Unicyclic Graphs
    Jerline, J. Amalorpava
    Michaelraj, L. Benedict
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 115 - 122
  • [35] ON THE HARMONIC INDEX AND DIAMETER OF UNICYCLIC GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    MATHEMATICAL REPORTS, 2020, 22 (01): : 11 - 18
  • [36] ON A CONJECTURE OF HARMONIC INDEX AND DIAMETER OF GRAPHS
    Jerline, J. Amalorpava
    Michaelraj, L. Benedict
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (01): : 73 - 78
  • [37] On sharp bounds of the zero-order Randic index of certain unicyclic graphs
    Lin, Anhua
    Luo, Rong
    Zha, Xiaoya
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 585 - 589
  • [38] Randic index and information
    Gutman, Ivan
    Furtula, Boris
    Katanic, Vladimir
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) : 307 - 312
  • [39] On the Szeged index of unicyclic graphs with given diameter
    Liu, Yan
    Yu, Aimei
    Lu, Mei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 118 - 130
  • [40] The diameter and Wiener index of modular product graphs
    Zuo, Liancui
    Zhou, Jingyi
    Zhang, Shaoqiang
    ARS COMBINATORIA, 2018, 140 : 267 - 275