The Randic index and the diameter of graphs

被引:7
|
作者
Yang, Yiting [2 ]
Lu, Linyuan [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Randic index; Diameter; MOLECULAR CONNECTIVITY;
D O I
10.1016/j.disc.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Randic index R(G) of a graph G is defined as the sum of 1/root d(u)d(v) over all edges uv of G, where d(u) and d(v) are the degrees of vertices u and v. respectively. Let D(G) be the diameter of G when G is connected. Aouchiche et al. (2007)[1] conjectured that among all connected graphs G on n vertices the path P-n achieves the minimum values for both R(G)/D(G) and R(G) - D(G). We prove this conjecture completely. In fact, we prove a stronger theorem: If G is a connected graph, then R(G) - 1/2D(G) >= root 2 - 1, with equality if and only if G is a path with at least three vertices. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1333 / 1343
页数:11
相关论文
共 50 条
  • [1] A proof for a conjecture on the Randic index of graphs with diameter
    Liu, Jianxi
    Liang, Meili
    Cheng, Bo
    Liu, Bolian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 752 - 756
  • [2] General Randic index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 7 - 16
  • [4] The Randic index and signless Laplacian spectral radius of graphs
    Ning, Bo
    Peng, Xing
    DISCRETE MATHEMATICS, 2019, 342 (03) : 643 - 653
  • [5] INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS
    Das, Kinkar Ch.
    Balachandran, Selvaraj
    Gutman, Ivan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (02) : 304 - 313
  • [6] On the Randic index and girth of graphs
    Liang, Meili
    Liu, Bolian
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 212 - 216
  • [7] About a Conjecture on the Randic Index of Graphs
    Zuo, Liancui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 411 - 424
  • [8] Energy and Randic index of directed graphs
    Arizmendi, Gerardo
    Arizmendi, Octavio
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (16) : 2696 - 2707
  • [9] Sharp bounds on the zeroth-order general Randic index of unicyclic graphs with given diameter
    Pan, Xiang-Feng
    Liu, Huiqing
    Liu, Meimei
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 687 - 691
  • [10] On a conjecture of the Randic index and the minimum degree of graphs
    Liu, Jianxi
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2544 - 2548