A geometrical look at iterative methods for operators with fixed points

被引:41
作者
Crombez, G [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
common fixed points; Fejer-monotone methods; quasi-nonexpansive operator;
D O I
10.1081/NFA-200063882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We distinguish classes of operators T with fixed points on a real Hilbert space by comparing the distances of a point x and its image Tx to the (set of) fixed points of T; this leads to a ranking of those classes, based on a nonnegative parameter. That same parameter also lets us conclude about the sign of and an upper bound for a characteristic inner product result that arises in iterative processes to obtain a common fixed point of a set of operators. We use that parameter (is the starting point for a geometrically-inclined study of specific iterative algorithms intended to find a common fixed point of operators belonging to such class.
引用
收藏
页码:157 / 175
页数:19
相关论文
共 15 条
[1]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[2]  
Bregman L. M., 1965, SOV MATH DOKL, V6, P688
[3]   STRONG-CONVERGENCE OF EXPECTED-PROJECTION METHODS IN HILBERT-SPACES [J].
BUTNARIU, D ;
FLAM, SD .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (5-6) :601-636
[4]   Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems [J].
Censor, Y ;
Gordon, D ;
Gordon, R .
PARALLEL COMPUTING, 2001, 27 (06) :777-808
[5]  
Combettes, 2001, INHERENTLY PARALLEL, V8, P115, DOI DOI 10.1016/S1570-579X(01)80010-0
[6]   Parallel algorithms for finding common fixed points of paracontractions [J].
Crombez, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (1-2) :47-59
[7]  
CROMBEZ G, 2002, J NONLINEAR CONVEX A, V3, P345
[8]  
Deutsch F, 1998, NUMER FUNC ANAL OPT, V19, P33, DOI 10.1080/01630569808816813
[9]   CONVERGENCE OF SEQUENTIAL AND ASYNCHRONOUS NONLINEAR PARACONTRACTIONS [J].
ELSNER, L ;
KOLTRACHT, I ;
NEUMANN, M .
NUMERISCHE MATHEMATIK, 1992, 62 (03) :305-319
[10]  
Gubin LC., 1967, USSR Comput. Math. Math. Phys, V7, P1, DOI [DOI 10.1016/0041-5553(67)90113-9, 10.1016/0041-5553(67)90113-9]