Intra- and Inter-Slice Contrastive Learning for Point Supervised OCT Fluid Segmentation

被引:36
作者
He, Xingxin [1 ]
Fang, Leyuan [1 ]
Tan, Mingkui [2 ]
Chen, Xiangdong [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Peoples R China
[3] Hunan Univ Chinese Med, Affiliated Hosp 1, Dept Ophthalmol, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluids; Image segmentation; Retina; Annotations; Task analysis; Proposals; Convolutional neural networks; Optical coherence tomography; fluid segmentation; convolutional neural network; weakly-supervised learning; contrastive learning; MACULAR EDEMA; CONVOLUTIONAL NETWORKS; AUTOMATED SEGMENTATION; RETINAL LAYER; DEFINITION; FRAMEWORK; PATHOLOGY;
D O I
10.1109/TIP.2022.3148814
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
OCT fluid segmentation is a crucial task for diagnosis and therapy in ophthalmology. The current convolutional neural networks (CNNs) supervised by pixel-wise annotated masks achieve great success in OCT fluid segmentation. However, requiring pixel-wise masks from OCT images is time-consuming, expensive and expertise needed. This paper proposes an Intra- and inter-Slice Contrastive Learning Network (ISCLNet) for OCT fluid segmentation with only point supervision. Our ISCLNet learns visual representation by designing contrastive tasks that exploit the inherent similarity or dissimilarity from unlabeled OCT data. Specifically, we propose an intra-slice contrastive learning strategy to leverage the fluid-background similarity and the retinal layer-background dissimilarity. Moreover, we construct an inter-slice contrastive learning architecture to learn the similarity of adjacent OCT slices from one OCT volume. Finally, an end-to-end model combining intra- and inter-slice contrastive learning processes learns to segment fluid under the point supervision. The experimental results on two public OCT fluid segmentation datasets (i.e., AI Challenger and RETOUCH) demonstrate that the ISCLNet bridges the gap between fully-supervised and weakly-supervised OCT fluid segmentation and outperforms other well-known point-supervised segmentation methods.
引用
收藏
页码:1870 / 1881
页数:12
相关论文
共 71 条
  • [1] Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography
    Ahlers, C.
    Simader, C.
    Geitzenauer, W.
    Stock, G.
    Stetson, P.
    Dastmalchi, S.
    Schmidt-Erfurth, U.
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2008, 92 (02) : 197 - 203
  • [2] Single-Stage Semantic Segmentation from Image Labels
    Araslanov, Nikita
    Roth, Stefan
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4252 - 4261
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] What's the Point: Semantic Segmentation with Point Supervision
    Bearman, Amy
    Russakovsky, Olga
    Ferrari, Vittorio
    Fei-Fei, Li
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 549 - 565
  • [5] RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
    Bogunovic, Hrvoje
    Venhuizen, Freerk
    Klimscha, Sophie
    Apostolopoulos, Stefanos
    Bab-Hadiashar, Alireza
    Bagci, Ulas
    Beg, Mirza Faisal
    Bekalo, Loza
    Chen, Qiang
    Ciller, Carlos
    Gopinath, Karthik
    Gostar, Amirali K.
    Jeon, Kiwan
    Ji, Zexuan
    Kang, Sung Ho
    Koozekanani, Dara D.
    Lu, Donghuan
    Morley, Dustin
    Parhi, Keshab K.
    Park, Hyoung Suk
    Rashno, Abdolreza
    Sarunic, Marinko
    Shaikh, Saad
    Sivaswamy, Jayanthi
    Tennakoon, Ruwan
    Yadav, Shivin
    De Zanet, Sandro
    Waldstein, Sebastian M.
    Gerendas, Bianca S.
    Klaver, Caroline
    Sanchez, Clara, I
    Schmidt-Erfurth, Ursula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1858 - 1874
  • [6] Chaitanya K., 2020, Adv. Neural. Inf. Process. Syst, V33, P12546
  • [7] Self-supervised learning for medical image analysis using image context restoration
    Chen, Liang
    Bentley, Paul
    Mori, Kensaku
    Misawa, Kazunari
    Fujiwara, Michitaka
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 58
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] Coscas G, 2010, DEV OPHTHALMOL, V47, P1, DOI 10.1159/000320070
  • [10] BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation
    Dai, Jifeng
    He, Kaiming
    Sun, Jian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1635 - 1643