Periodicity and circle packings of the hyperbolic plane

被引:24
作者
Bowen, L [1 ]
机构
[1] Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
circle packing; densest packings; hyperbolic plane; invariant measures; optimal density;
D O I
10.1023/B:GEOM.0000006580.47816.e9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that given a fixed radius r, the set of isometry-invariant probability measures supported on 'periodic' radius r-circle packings of the hyperbolic plane is dense in the space of all isometry-invariant probability measures on the space of radius r-circle packings. By a periodic packing, we mean one with cofinite symmetry group. As a corollary, we prove the maximum density achieved by isometry-invariant probability measures on a space of radius r-packings of the hyperbolic plane is the supremum of densities of periodic packings. We also show that the maximum density function varies continuously with radius.
引用
收藏
页码:213 / 236
页数:24
相关论文
共 25 条
  • [1] The Bianchi groups are separable on geometrically finite subgroups
    Agol, I
    Long, DD
    Reid, AW
    [J]. ANNALS OF MATHEMATICS, 2001, 153 (03) : 599 - 621
  • [2] B?r?czky K., 1964, ACTA MATH ACAD SCI H, V15, P237, DOI DOI 10.1007/BF01897041
  • [3] Percolation in the hyperbolic plane
    Benjamini, I
    Schramm, O
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 487 - 507
  • [4] BEZDEK K, 1982, STUD SCI MATH HUNG, V17, P353
  • [5] PACKING OF SPHERES IN SPACES OF CONSTANT CURVATURE
    BOROCZKY, K
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (3-4): : 243 - 261
  • [6] Bowen L, 2003, DISCRETE COMPUT GEOM, V29, P23, DOI [10.1007/s00454-002-2791-7, 10.1007/s00454-002-0791-7]
  • [7] BOWEN L, 1998, GEOM DEDICATA, V1, P211
  • [8] BOWEN L, IN PRESS GEOM DEDICA
  • [9] B┬u├er┬u├eczky, 1974, MAT LAPOK, V25, P265
  • [10] CONWAY JH, 1988, GRUNDLE MATH WISS, V290