On Riemann and Caputo fractional differences

被引:518
作者
Abdeljawad, Thabet [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
Left fractional sum; Right fractional sum; Caputo left and right fractional differences; Left and right Riemann differences; Discrete Mittag-Leffler function; EQUATIONS; DERIVATIVES; CALCULUS;
D O I
10.1016/j.camwa.2011.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define left and right Caputo fractional sums and differences, study some of their properties and then relate them to Riemann-Liouville ones studied before by Miller K. S. and Ross B., Atici F.M. and Eloe P. W., Abdeljawad T. and Baleanu D., and a few others. Also, the discrete version of the Q-operator is used to relate the left and right Caputo fractional differences. A Caputo fractional difference equation is solved. The solution proposes discrete versions of Mittag-Leffler functions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1602 / 1611
页数:10
相关论文
共 22 条
  • [1] On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives
    Abdeljawad, Thabet
    Jarad, Fahd
    Baleanu, Dumitru
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (10): : 1775 - 1786
  • [2] Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives
    Abdeljawad, Thabet
    Baleanu, Dumitru
    Jarad, Fahd
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (08)
  • [3] Abdeljawad T, 2011, J COMPUT ANAL APPL, V13, P574
  • [4] A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems
    Agrawal, Om P.
    Baleanu, Dumitru
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1269 - 1281
  • [5] [Anonymous], 1989, ELLIS HORWOOD SERIES
  • [6] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [7] [Anonymous], ELECT J QUALITATIVE
  • [8] [Anonymous], 2006, Journal of the Electrochemical Society
  • [9] [Anonymous], 1993, THEORY APPL
  • [10] On a class of differential equations with left and right fractional derivatives
    Atanackovic, T. M.
    Stankovic, B.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (07): : 537 - 546