On Riemann and Caputo fractional differences

被引:546
作者
Abdeljawad, Thabet [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
Left fractional sum; Right fractional sum; Caputo left and right fractional differences; Left and right Riemann differences; Discrete Mittag-Leffler function; EQUATIONS; DERIVATIVES; CALCULUS;
D O I
10.1016/j.camwa.2011.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define left and right Caputo fractional sums and differences, study some of their properties and then relate them to Riemann-Liouville ones studied before by Miller K. S. and Ross B., Atici F.M. and Eloe P. W., Abdeljawad T. and Baleanu D., and a few others. Also, the discrete version of the Q-operator is used to relate the left and right Caputo fractional differences. A Caputo fractional difference equation is solved. The solution proposes discrete versions of Mittag-Leffler functions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1602 / 1611
页数:10
相关论文
共 22 条
[1]   On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives [J].
Abdeljawad, Thabet ;
Jarad, Fahd ;
Baleanu, Dumitru .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (10) :1775-1786
[2]   Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru ;
Jarad, Fahd .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (08)
[3]  
Abdeljawad T, 2011, J COMPUT ANAL APPL, V13, P574
[4]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[5]  
[Anonymous], 1989, ELLIS HORWOOD SERIES
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
[Anonymous], ELECT J QUALITATIVE
[8]  
[Anonymous], 2006, Journal of the Electrochemical Society
[9]  
[Anonymous], 1993, THEORY APPL
[10]   On a class of differential equations with left and right fractional derivatives [J].
Atanackovic, T. M. ;
Stankovic, B. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (07) :537-546