Analytical expressions for stability regions in the Ince-Strutt diagram of Mathieu equation

被引:18
作者
Butikov, Eugene I. [1 ]
机构
[1] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
关键词
INVERTED PENDULUM;
D O I
10.1119/1.5021895
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Simple analytical expressions are suggested for transition curves that separate, in the Ince-Strutt diagram, different types of solutions to the famous Mathieu equation. The derivations of these expressions in this paper rely on physically meaningful periodic solutions describing various regular motions of a familiar nonlinear mechanical system-a rigid planar pendulum with a vertically oscillating pivot. The paper is accompanied by a relevant simulation program. (C) 2018 American Association of Physics Teachers.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, pCH20
[2]   UPSIDE-DOWN PENDULUMS [J].
ACHESON, DJ ;
MULLIN, T .
NATURE, 1993, 366 (6452) :215-216
[3]   MULTIPLE-NODDING OSCILLATIONS OF A DRIVEN INVERTED PENDULUM [J].
ACHESON, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 448 (1932) :89-95
[4]  
[Anonymous], 1951, J. Exp. Theor. Phys
[5]   STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM [J].
BLACKBURN, JA ;
SMITH, HJT ;
GRONBECHJENSEN, N .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (10) :903-908
[6]  
Butikov E. I., 2012, NONLINEAR OSCILLATIO
[7]  
Butikov EI, 2002, LECT NOTES COMPUT SC, V2331, P1154
[8]   Subharmonic resonances of the parametrically driven pendulum [J].
Butikov, EI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (30) :6209-6231
[9]   On the dynamic stabilization of an inverted pendulum [J].
Butikov, EI .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (07) :755-768
[10]   An improved criterion for Kapitza's pendulum stability [J].
Butikov, Eugene I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (29)