Fourier series of orthogonal polynomials

被引:0
作者
Greene, Nataniel [1 ]
机构
[1] Kings Community Coll, Dept Math & Comp Sci, 2001 Oriental Blvd, Brooklyn, NY 11235 USA
来源
RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08) | 2008年
关键词
Fourier series; orthogonal polynomials; Gegenbauer polynomials; Jacobi polynomials; Laguerre polynomials; Hermite polynomials;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit formulas for the Fourier coefficients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, similar formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials.
引用
收藏
页码:247 / +
页数:2
相关论文
共 14 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Askey R., 1975, ORTHOGONAL POLYNOMIA
[3]  
Bateman H., 1954, Tables of Integral Transforms, V2
[4]  
Bateman H., 1953, Higher transcendental functions
[5]  
Bateman H., 1953, Higher transcendental functions, VII
[6]   On the Gibbs phenomenon and its resolution [J].
Gottlieb, D ;
Shu, CW .
SIAM REVIEW, 1997, 39 (04) :644-668
[7]   ON THE GIBBS PHENOMENON .4. RECOVERING EXPONENTIAL ACCURACY IN A SUBINTERVAL FROM A GEGENBAUER PARTIAL SUM OF A PIECEWISE ANALYTIC-FUNCTION [J].
GOTTLIEB, D ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :1081-1095
[8]   ON THE GIBBS PHENOMENON .1. RECOVERING EXPONENTIAL ACCURACY FROM THE FOURIER PARTIAL SUM OF A NONPERIODIC ANALYTIC-FUNCTION [J].
GOTTLIEB, D ;
SHU, CW ;
SOLOMONOFF, A ;
VANDEVEN, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :81-98
[9]   On the Gibbs phenomenon .3. Recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function [J].
Gottlieb, D ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :280-290
[10]  
GREENE N, 2008, P AM C APPL MATH CAM