Cavity-catalyzed deterministic generation of maximal entanglement between nonidentical atoms

被引:10
作者
An, NB [1 ]
机构
[1] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea
关键词
D O I
10.1016/j.physleta.2005.05.097
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By exactly solving the underlying Schodinger equation we show that one and the same resonant cavity can be used as a catalyst to maximally entangle atoms of two nonidentical groups. The generation scheme is realistic and advantageous in the sense that it is deterministic, efficient, scalable and immune from decoherence effects. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 38 条
[1]  
Buzek V, 2000, PHYS REV A, V62, DOI [10.1103/PhysRevA.62.022303, 10.1103/PhysRevA.60.R2626]
[2]   Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states -: art. no. 032108 [J].
Cabello, A .
PHYSICAL REVIEW A, 2002, 65 (03) :4
[3]   Teleportation of a two-particle entangled state via W class states [J].
Cao, ZL ;
Song, W .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 :177-183
[4]   Probabilistic teleportation of unknown atomic state using W class states [J].
Cao, ZL ;
Yang, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 337 (1-2) :132-140
[5]   Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state [J].
Dai, HY ;
Chen, PX ;
Li, CZ .
OPTICS COMMUNICATIONS, 2004, 231 (1-6) :281-287
[6]   Cavity QED and quantum-information processing with "hot" trapped atoms [J].
Duan, LM ;
Kuzmich, A ;
Kimble, HJ .
PHYSICAL REVIEW A, 2003, 67 (03) :13
[7]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[8]   Experimental realization of a three-qubit entangled W state -: art. no. 077901 [J].
Eibl, M ;
Kiesel, N ;
Bourennane, M ;
Kurtsiefer, C ;
Weinfurter, H .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[9]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[10]   Tripartite entanglement and quantum relative entropy [J].
Galvao, EF ;
Plenio, MB ;
Virmani, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :8809-8818