Blow-up phenomena for a class of metaparabolic equations with time dependent coefficient

被引:1
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
来源
AIMS MATHEMATICS | 2017年 / 2卷 / 04期
关键词
metaparabolic equations; blow up; upper bound; lower bound; CAHN-HILLIARD EQUATION; NONLINEAR-WAVE EQUATIONS; EVOLUTION-EQUATIONS; GLOBAL EXISTENCE; DISSIPATIVE TERM; DAMPING TERM; DIFFUSION; ATTRACTOR; BEHAVIOR;
D O I
10.3934/Math.2017.4.647
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the initial boundary value problem for a metaparabolic equations with time dependent coefficient. Under suitable conditions on initial data, a blow-up criterion which ensures that u cannot exist all time is given, and an upper bound for blow up time is derived. Moreover, we also obtain a lower bound for blow-up time if blow up does occur by means of a differential inequality technique.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 32 条
[1]   ON THE PROBLEM OF DIFFUSION IN SOLIDS [J].
AIFANTIS, EC .
ACTA MECHANICA, 1980, 37 (3-4) :265-296
[2]  
Al'shin A.B., 2011, Blow up in nonlinear sobolev type equations
[3]   A WEAKLY NONLINEAR-ANALYSIS OF ELASTO-PLASTIC-MICROSTRUCTURE MODELS [J].
AN, LJ ;
PEIRCE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :136-155
[4]  
[Anonymous], 2011, LECT NOTES MATH
[5]   THE VISCOUS CAHN-HILLIARD EQUATION .1. COMPUTATIONS [J].
BAI, F ;
ELLIOTT, CM ;
GARDINER, A ;
SPENCE, A ;
STUART, AM .
NONLINEARITY, 1995, 8 (02) :131-160
[6]   The initial-boundary value problems for a class of nonlinear wave equations with damping term [J].
Chen, Guowang ;
Lu, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :1-15
[7]   GLOBAL WELL-POSEDNESS FOR A FOURTH ORDER PSEUDO-PARABOLIC EQUATION WITH MEMORY AND SOURCE TERMS [J].
Di, Huafei ;
Shang, Yadong ;
Zheng, Xiaoxiao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03) :781-801
[8]   Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn-Hilliard equation [J].
Elliott, CM ;
Kostin, IN .
NONLINEARITY, 1996, 9 (03) :687-702
[9]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423
[10]  
Galaktionov V.A., 2014, MONOGR RES NOTES MAT