Photonic bandgap (PBG) accelerator structure design

被引:0
|
作者
Marsh, R. A. [1 ]
Shapiro, M. A. [1 ]
Temkin, R. J. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
来源
2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11 | 2007年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The damping of wakefields is a critical issue in high gradient accelerators operating at high frequency. It is also very important in the next generation of accelerator structures. Photonic band gap (PBG) structures have uniquely motivated damping properties, and offer significant wakefield damping. The goal of this work is to quantify the higher order mode content of a constructed metallic PBG accelerator structure, and to provide direction for future structure design. Simulations are supported by experiments currently being performed to directly measure wakefields in a 6 cell PBG structure. Future design work will focus on a structure to be cold tested, tuned, and processed to high gradient operation at the MIT Haimson 17 GHz high gradient acceleration lab.
引用
收藏
页码:2249 / 2251
页数:3
相关论文
共 50 条
  • [1] Effect of substrate parameters on planar photonic bandgap (PBG) structure
    Mollah, MN
    Karmakar, NC
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 811 - 814
  • [2] A study on ferroelectric phase shifter with photonic-bandgap (PBG) structure
    Kim, YT
    Kwak, MH
    Ryu, HC
    Moon, SE
    Lee, SJ
    Kang, KY
    INTEGRATED FERROELECTRICS, 2005, 77 : 63 - 67
  • [3] A novel double-frequency-tuned photonic bandgap (PBG) structure
    Görür, A
    Karpuz, C
    Görür, H
    Yalçin, K
    APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 771 - 774
  • [4] Observation of wakefields in a 17 GHz metallic photonic bandgap (PBG) structure
    Marsh, R. A.
    Shapiro, M. A.
    Temkin, R. J.
    Smirnova, E. I.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2246 - +
  • [5] Efficiency of various photonic bandgap (PBG) structures
    Sun, JS
    Chen, GY
    2002 3RD INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2002, : 1055 - 1058
  • [6] A high rejection low pass filter serve photonic bandgap (PBG) design
    Sun, JS
    Chen, GY
    2004 4TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2004, : 487 - 490
  • [7] Improved coplanar waveguide (CPW) bandstop filter with photonic bandgap (PBG) structure
    Her, ML
    Chang, CM
    Wang, YZ
    Kung, FH
    Chiou, YC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 38 (04) : 274 - 277
  • [8] Measurement of wakefields in a 17 GHz photonic bandgap accelerator structure
    Marsh, Roark A.
    Shapiro, Michael A.
    Temkin, Richard J.
    Smirnova, Evgenya I.
    DeFordd, John F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 618 (1-3): : 16 - 21
  • [9] Novel Chebyshev distributed chirped photonic bandgap (PBG) structures
    Fu, Jeffrey S.
    Mollah, Md. Nurunnabi
    Karmakar, Nemai C.
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2006, 27 (04): : 571 - 589
  • [10] Novel Chebyshev distributed chirped photonic bandgap (PBG) structures
    Fu J.S.
    Mollah M.N.
    Karmakar N.C.
    International Journal of Infrared and Millimeter Waves, 2006, 27 (4): : 571 - 589