The boundary of higher rank numerical ranges

被引:14
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi [2 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
Rank-k-numerical range; Flat portion; Singular point; Roulette curve;
D O I
10.1016/j.laa.2011.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rank-k-numerical range of an n x n matrix A is defined as Lambda(k) (A) = {lambda is an element of C : PAP = lambda P for some rank k orthogonal projection P}. This study presents a method to generate the boundary of Lambda(k)(A), and examines the flat portions of the boundary of the rank-k-numerical range of a matrix associated with a roulette curve. A sufficient condition is given to ensure that the rank-k-numerical range is not attainable by a classical numerical range. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2971 / 2985
页数:15
相关论文
共 15 条
[1]   Construction of determinantal representation of trigonometric polynomials [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) :1277-1284
[2]   Reduction of the c-numerical range to the classical numerical range [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) :615-624
[3]   Numerical Range for Orbits Under a Central Force [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2010, 13 (04) :315-330
[4]   Higher-rank numerical ranges and compression problems [J].
Choi, Man-Duen ;
Kribs, David W. ;
Zyczkowski, Karol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :828-839
[5]   Quantum error correcting codes from the compression formalism [J].
Choi, Man-Duen ;
Kribs, David W. ;
Zyczkowski, Karol .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (01) :77-91
[6]  
Donoghue W.F., 1957, Mich. J. Math., V4, P261
[7]  
Horn RA., 2013, MATRIX ANAL
[8]  
Kippenhahn R., 1951, Math. Nachr., V6, P193
[9]   Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations [J].
Li, Chi-Kwong ;
Sze, Nung-Sing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) :3013-3023
[10]   Condition for the higher rank numerical range to be non-empty [J].
Li, Chi-Kwong ;
Poon, Yiu-Tung ;
Sze, Nung-Sing .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :365-368