A generalization of a theorem of Chernoff on standard operator algebras

被引:3
作者
Kosi-Ulbl, Irena [1 ]
Rodriguez Palacios, Angel [2 ]
Vukman, Joso [3 ]
机构
[1] Univ Maribor, Fac Mech Engn, Smetanova 17, Maribor 2000, Slovenia
[2] Univ Granada, Dept Anal Matemat, Fac Ciencias, Granada 18071, Spain
[3] Univ Maribor, Fac Nat Sci & Math, Dept Math & Comp Sci, Koroska 160, Maribor 2000, Slovenia
来源
MONATSHEFTE FUR MATHEMATIK | 2021年 / 195卷 / 04期
关键词
Banach space; Algebra of all bounded linear operators; Standard operator algebra; Derivation; Jordan derivation; JORDAN DERIVATIONS;
D O I
10.1007/s00605-021-01596-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a real or complex Banach space, let A be a standard operator algebra on X, let n be a positive integer, and let D : A -> L( X) be a linear mapping such that the equality D(A(2n)) = D(A(n)) A(n) + A(n)D(A(n)) holds for every A. A. We prove that D can be written in a unique way as D = D-1+ D-0 where D-1 : A -> L( X) is of the form A -> AB - BA for some B. L(X), and D-0 : A -> L( X) is a linear mapping such that D-0(A(n)) = 0 for every A -> A. The case n = 1 of this result refines a theorem of Chernoff.
引用
收藏
页码:675 / 685
页数:11
相关论文
共 22 条
[1]  
Ara P., 2003, SPRINGER MONOGR MATH
[2]   A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem [J].
Argyros, Spiros A. ;
Haydon, Richard G. .
ACTA MATHEMATICA, 2011, 206 (01) :1-54
[3]  
Beidar K. I., 1996, Monographs and Textbooks in Pure and Applied Mathematics, V196
[4]   On Herstein's Lie map conjectures, II [J].
Beidar, KI ;
Bresar, M ;
Chebotar, MA ;
Martindale, WS .
JOURNAL OF ALGEBRA, 2001, 238 (01) :239-264
[5]  
Bonsall F.F., 1973, Complete Normed Algebras
[6]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[7]  
BRESAR M, 1988, P AM MATH SOC, V104, P1003
[8]   JORDAN DERIVATIONS ON PRIME-RINGS [J].
BRESAR, M ;
VUKMAN, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) :321-322
[9]  
Bresar M., 1991, JORDAN DERIVATIONS G, V26, P13
[10]  
García MC, 2014, ENCYCLOP MATH APPL, V154, P1