Computational modeling of a carbon nanotube-based DNA nanosensor

被引:15
作者
Kalantari-Nejad, R. [1 ]
Bahrami, M. [1 ]
Rafii-Tabar, H. [2 ,3 ,4 ]
Rungger, I. [5 ,6 ]
Sanvito, S. [5 ,6 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Dept Med Phys & Biomed Engn, Tehran, Iran
[3] Shahid Beheshti Univ Med Sci, Res Ctr Med Nanotechnol & Tissue Engn, Tehran, Iran
[4] Inst Res Fundamental Sci IPM, Computat Phys Sci Lab, Dept Nanosci, Tehran, Iran
[5] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[6] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
基金
美国国家科学基金会;
关键词
TRANSPORT; FUNCTIONALIZATION; BIOLOGY; FIELD;
D O I
10.1088/0957-4484/21/44/445501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
During the last decade the design of biosensors, based on quantum transport in one-dimensional nanostructures, has developed as an active area of research. Here we investigate the sensing capabilities of a DNA nanosensor, designed as a semiconductor single walled carbon nanotube (SWCNT) connected to two gold electrodes and functionalized with a DNA strand acting as a bio-receptor probe. In particular, we have considered both covalent and non-covalent bonding between the DNA probe and the SWCNT. The optimized atomic structure of the sensor is computed both before and after the receptor attaches itself to the target, which consists of another DNA strand. The sensor's electrical conductance and transmission coefficients are calculated at the equilibrium geometries via the non-equilibrium Green's function scheme combined with the density functional theory in the linear response limit. We demonstrate a sensing efficiency of 70% for the covalently bonded bio-receptor probe, which drops to about 19% for the non-covalently bonded one. These results suggest that a SWCNT may be a promising candidate for a bio-molecular FET sensor.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes [J].
Abadir, G. B. ;
Walus, K. ;
Pulfrey, D. L. .
NANOTECHNOLOGY, 2010, 21 (01)
[2]  
Bhandarkar M., 2009, NAMD USERS GUIDE VER
[3]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[4]  
CHAO C, 2009, PHYS REV B, V79
[5]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732
[6]   An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J].
Chen, RJ ;
Choi, HC ;
Bangsaruntip, S ;
Yenilmez, E ;
Tang, XW ;
Wang, Q ;
Chang, YL ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (05) :1563-1568
[7]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[8]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[9]   Nanotechnologies for biomolecular detection and medical diagnostics [J].
Cheng, MMC ;
Cuda, G ;
Bunimovich, YL ;
Gaspari, M ;
Heath, JR ;
Hill, HD ;
Mirkin, CA ;
Nijdam, AJ ;
Terracciano, R ;
Thundat, T ;
Ferrari, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (01) :11-19
[10]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197