Current approaches for RNA-labelling to identify RNA-binding proteins

被引:18
作者
Gemmill, Darren [1 ,2 ]
D'souza, Simmone [1 ,2 ]
Meier-Stephenson, Vanessa [1 ,2 ,3 ]
Patel, Trushar R. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Lethbridge, Alberta RNA Res & Training Inst, Lethbridge, AB T1K 3M4, Canada
[2] Univ Lethbridge, Dept Chem & Biochem, Lethbridge, AB T1K 3M4, Canada
[3] Univ Calgary, Cumming Sch Med, Dept Microbiol Immunol & Infect Dis, Calgary, AB T2N 4N1, Canada
[4] Univ Alberta, Li Ka Shing Inst Virol, Edmonton, AB T6G 2E1, Canada
[5] Univ Alberta, Discovery Lab, Edmonton, AB T6G 2E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
RNA-binding proteins; biotin labelling; digoxigenin labelling; aptamer labelling; affinity capture; nucleotide-substitution method; SMALL NUCLEOLAR RNAS; IN-VITRO SELECTION; INTERACTING PROTEINS; MESSENGER-RNA; STRUCTURAL BASIS; GENE-EXPRESSION; AFFINITY TAGS; PURIFICATION; STREPTAVIDIN; BIOTIN;
D O I
10.1139/bcb-2019-0041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA is involved in all domains of life, playing critical roles in a host of gene expression processes, host-defense mechanisms, cell proliferation, and diseases. A critical component in many of these events is the ability for RNA to interact with proteins. Over the past few decades, our understanding of such RNA-protein interactions and their importance has driven the search and development of new techniques for the identification of RNA-binding proteins. In determining which proteins bind to the RNA of interest, it is often useful to use the approach where the RNA molecule is the "bait" and allow it to capture proteins from a lysate or other relevant solution. Here, we review a collection of methods for modifying RNA to capture RNA-binding proteins. These include small-molecule modification, the addition of aptamers, DNA-anchoring, and nucleotide substitution. With each, we provide examples of their application, as well as highlight their advantages and potential challenges.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 120 条
[21]   Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1 [J].
Dong, Yangchao ;
Yang, Jing ;
Ye, Wei ;
Wang, Yuan ;
Ye, Chuantao ;
Weng, Daihui ;
Gao, Huan ;
Zhang, Fanglin ;
Xu, Zhikai ;
Lei, Yingfeng .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (09) :22456-22472
[22]   Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography [J].
Easton, Laura E. ;
Shibata, Yoko ;
Lukavsky, Peter J. .
RNA, 2010, 16 (03) :647-653
[23]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[24]  
England T E, 1980, Methods Enzymol, V65, P65
[25]   Non-coding RNAs in human disease [J].
Esteller, Manel .
NATURE REVIEWS GENETICS, 2011, 12 (12) :861-874
[26]   An efficient method for long-term room temperature storage of RNA [J].
Fabre, Anne-Lise ;
Colotte, Marthe ;
Luis, Aurelie ;
Tuffet, Sophie ;
Bonnet, Jacques .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2014, 22 (03) :379-385
[27]   Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing [J].
Falaleeva, Marina ;
Pages, Amadis ;
Matuszek, Zaneta ;
Hidmi, Sana ;
Agranat-Tamir, Lily ;
Korotkov, Konstantin ;
Nevo, Yuval ;
Eyras, Eduardo ;
Sperling, Ruth ;
Stamm, Stefan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (12) :E1625-E1634
[28]   Ribonomic approaches to study the RNA-binding proteome [J].
Faoro, Camilla ;
Ataide, Sandro F. .
FEBS LETTERS, 2014, 588 (20) :3649-3664
[29]   Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs [J].
Flather, Dylan ;
Cathcart, Andrea L. ;
Cruz, Casey ;
Baggs, Eric ;
Ngo, Tuan ;
Gershon, Paul D. ;
Semler, Bert L. .
VIRUSES-BASEL, 2016, 8 (02)
[30]   A census of human RNA-binding proteins [J].
Gerstberger, Stefanie ;
Hafner, Markus ;
Tuschl, Thomas .
NATURE REVIEWS GENETICS, 2014, 15 (12) :829-845