Subnormality and residuals for saturated formations: A generalization of Schenkman's theorem

被引:6
作者
Aivazidis, Stefanos [1 ]
Safonova, Inna N. [2 ]
Skiba, Alexander N. [3 ]
机构
[1] Univ Crete, Dept Math & Appl Math, Voutes Campus, Iraklion 70013, Greece
[2] Belarusian State Univ, Dept Appl Math & Comp Sci, Minsk 220030, BELARUS
[3] Franc Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
关键词
FINITE-GROUPS; SUBGROUPS;
D O I
10.1515/jgth-2020-0149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let F be a hereditary saturated formation. We denote by Z(F)(G) the product of all normal subgroups N of G such that every chief factor H/K of G below N is F-central in G, that is, (H/K) (sic) (G/C-G(H/K)) is an element of F. A subgroup A <= G is said to be F-subnormal in the sense of Kegel, or K-F-subnormal in G, if there is a subgroup chain A = A(0) <= A(1) <= ... <= A(n) = G such that either A(i-1) (sic) A(i) or A(i)/(A(i-1))(Ai) is an element of F for all i = 1, ..., n. In this paper, we prove the following generalization of Schenkman's theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let F be a hereditary saturated formation containing all nilpotent groups, and let S be a K-F-subnormal subgroup of G. If Z(F)(E) = 1 for every subgroup E of G such that S <= E, then C-G (D) <= D, where D = S-F is the F-residual of S.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 18 条
[1]   On σ-subnormal subgroups of factorised finite groups [J].
Ballester-Bolinches, A. ;
Kamornikov, S. F. ;
Pedraza-Aguilera, M. C. ;
Yi, X. .
JOURNAL OF ALGEBRA, 2020, 559 :195-202
[2]  
Ballester-Bolinches A, 2020, RACSAM REV R ACAD A, V114, DOI 10.1007/s13398-020-00824-4
[3]  
Ballester-Bolinches A., 2006, CLASSES FINITE GROUP, V584
[4]   GASCHUTZ FUNCTORS ON FINITE SOLUBLE GROUPS [J].
BARNES, DW ;
KEGEL, OH .
MATHEMATISCHE ZEITSCHRIFT, 1966, 94 (02) :134-&
[5]   On τσ-quasinormal subgroups of finite groups [J].
Beidleman, James C. ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2017, 20 (05) :955-969
[6]  
Dergacheva I. M., 2020, PROBL FIZ MAT TEKH, P91
[7]   Finite groups whose n-maximal subgroups are σ-subnormal [J].
Guo, Wenbin ;
Skiba, Alexander N. .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (07) :1355-1372
[8]  
Isaacs I.M, 2008, FINITE GROUP THEORY, V92
[9]   On σ-Subnormal Subgroups of Finite Groups [J].
Kamornikov, S. F. ;
Tyutyanov, V. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) :266-270