Extending structures for 3-Lie algebras

被引:10
作者
Zhang, Tao [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
3-Lie algebras; cohomology; deformations; extending structures; unified product; LEIBNIZ; EXTENSIONS;
D O I
10.1080/00927872.2021.1984493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The cohomology and deformation theory of 3-Lie algebras are revisited. The theory of extending structures and unified product for 3-Lie algebras are developed. It is proved that the extending structures of 3-Lie algebras can be classified by using some non-abelian cohomology and deformation map theory.
引用
收藏
页码:1469 / 1497
页数:29
相关论文
共 34 条
[1]   Extending structures, Galois groups and supersolvable associative algebras [J].
Agore, A. L. ;
Militaru, G. .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01) :1-33
[2]   Ito's theorem and metabelian Leibniz algebras [J].
Agore, A. L. ;
Militaru, G. .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11) :2187-2199
[3]   Extending structures for Lie algebras [J].
Agore, A. L. ;
Militaru, G. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02) :169-193
[4]   Unified products for Leibniz algebras. Applications [J].
Agore, A. L. ;
Militaru, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) :2609-2633
[5]   Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras [J].
Agore, Ana-Loredana ;
Militaru, Gigel .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[6]   3-LIE BIALGEBRAS [J].
Bai, Ruipu ;
Cheng, Yu ;
Lie, Jiaqian ;
Meng, Wei .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) :513-522
[7]   Module extensions of 3-Lie algebras [J].
Bai, Ruipu ;
Wu, Wanqing ;
Li, Ying ;
Li, Zhenheng .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (04) :433-447
[8]   Quantum bi-Hamiltonian systems [J].
Cariñena, JF ;
Grabowski, J ;
Marmo, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30) :4797-4810
[9]   Leibniz n-algebras [J].
Casas, JM ;
Loday, JL ;
Pirashvilli, T .
FORUM MATHEMATICUM, 2002, 14 (02) :189-207
[10]   Leibniz and Lie algebra structures for Nambu algebra [J].
Daletskii, YL ;
Takhtajan, LA .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (02) :127-141