A novel approach for the fabrication of double-shelled, sandwiched, and nanostructured hollow spheres was proposed, using hydrotherm reaction and calcination. The negatively charged nanoparticles (e.g., Au, Ag, and Pt) could be adsorbed successively onto the positively charged hollow spheres (e.g., TiO2, ZnO, and ZrO2). The resulted nanocomposites (TiO2@Au, as a proof-of-concept) were dispersed in glucose solution under hydrothermal conditions. After calcination, uniform double-shelled and sandwiched TiO2@Au@C hollow spheres were obtained and Au nanoparticles were sandwiched between the shell wall of TiO2 and C. The samples were characterized by SEM, TEM, XRD, XPS, BET, and UVvis DRS. The photocatalytic activity for the degradation of 4-nitroaniline was in the order of TiO2@Au@C > TiO2@C > TiO2/Au > P25. The visible-light photodegradation rate of 92.65% for 4-nitroaniline was achieved by TiO2@Au@C, which exhibited an increase of 75% compared to Degussa P25 TiO2. Furthermore, no deactivation occurred during catalytic reaction for three times, i.e., the TiO2@Au@C microspheres exhibited superior photocatalytic stability. TiO2@Au@C microspheres could also enhance the photocatalytic activity for hydrogen generation from methanol/water solutions. The synergistic effect of coupling TiO2 hollow spheres with Au nanoparticles and C shell on photocatalytic performance was proved by us. The photoexcited electrons from Au nanoparticles could be captured by the conduction band of TiO2 and then the electronhole separation was improved. Moreover, both the visible light absorption and the affinity between TiO2 and pollutants could be improved by the coexistence of carbonaceous materials, which could facilitate the photocatalytic interface reaction.