Nonlocal operators with singular anisotropic kernels

被引:25
作者
Chaker, Jamil [1 ]
Kassmann, Moritz [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
Anisotropic measure; energy form; jump process; nonlocal operator; regularity; weak Harnack inequality; RANDOM-WALKS; HARNACKS INEQUALITY; REGULARITY;
D O I
10.1080/03605302.2019.1651335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlocal operators acting on functions in the Euclidean space. The operators under consideration generate anisotropic jump processes, e.g., a jump process that behaves like a stable process in each direction but with a different index of stability. Its generator is the sum of one-dimensional fractional Laplace operators with different orders of differentiability. We study such operators in the general framework of bounded measurable coefficients. We prove a weak Harnack inequality and Holder regularity results for solutions to corresponding integro-differential equations.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 28 条
[1]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[2]   Regularity of Harmonic functions for a class of singular stable-like processes [J].
Bass, Richard F. ;
Chen, Zhen-Qing .
MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (03) :489-503
[3]   Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian [J].
Bogdan, Krzysztof ;
Sztonyk, Pawel .
STUDIA MATHEMATICA, 2007, 181 (02) :101-123
[4]   REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS [J].
Caffarelli, Luis ;
Chan, Chi Hin ;
Vasseur, Alexis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :849-869
[5]   Regularity for anisotropic fully nonlinear integro-differential equations [J].
Caffarelli, Luis A. ;
Leitao, Raimundo ;
Urbano, Jose Miguel .
MATHEMATISCHE ANNALEN, 2014, 360 (3-4) :681-714
[6]  
Chaker J., 2016, 160708135 ARXIV
[7]   Elliptic Harnack inequalities for symmetric non-local Dirichlet forms [J].
Chen, Zhen-Qing ;
Kumagai, Takashi ;
Wang, Jian .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 :1-42
[8]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62
[9]   Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional De Giorgi classes [J].
Cozzi, Matteo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) :4762-4837
[10]  
De Giorgi E., 1957, MEN ACCAD SCI TORINO, V3, P25