The k-ordinary generalized geometric-arithmetic index

被引:0
作者
An, Mingqiang [1 ,2 ]
Xiong, Liming [1 ]
Su, Guifu [1 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Tianjin Univ Sci & Technol, Coll Sci, Tianjin 300457, Peoples R China
基金
北京市自然科学基金;
关键词
Geometric-arithmetic index; Lower and upper bounds; Connected graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-ordinary generalized geometric-arithmetic index of graphs is introduced, which generalizes the second geometric-arithmetic index, and some properties including lower and upper bounds in terms of other graph invariants and topological indices are obtained.
引用
收藏
页码:383 / 405
页数:23
相关论文
共 14 条
  • [1] Bondy J., 2008, GRADUATE TEXTS MATH
  • [2] Das KC, 2011, MATCH-COMMUN MATH CO, V65, P595
  • [3] On ordinary generalized geometric-arithmetic index
    Eliasi, Mehdi
    Iranmanesh, Ali
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 582 - 587
  • [4] A new geometric-arithmetic index
    Fath-Tabar, Gholamhossein
    Furtula, Boris
    Gutman, Ivan
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) : 477 - 486
  • [5] Gutman I., 2008, Recent Results in the Theory of Randi Index
  • [6] Gutman I., 1994, Graph Theory Notes N. Y., V27, P9
  • [7] Nordhaus E. A., 1956, Amer. Math. Monthly, V63, P175, DOI DOI 10.2307/2306658
  • [8] Pecaric J. E., 1993, Classical and New Inequalities in Analysis
  • [9] CHARACTERIZATION OF MOLECULAR BRANCHING
    RANDIC, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) : 6609 - 6615
  • [10] Todeschini R., 2008, Handbook of Molecular Descriptors