Statistical Modeling of Soil Moisture, Integrating Satellite Remote-Sensing (SAR) and Ground-Based Data

被引:21
作者
Hosseini, Reza [1 ]
Newlands, Nathaniel K. [2 ]
Dean, Charmaine B. [3 ]
Takemura, Akimichi [4 ]
机构
[1] IBM Res Collaboratory, Singapore 486048, Singapore
[2] Agr & Agri Food Canada, Lethbridge Res Ctr, Sci & Technol, Lethbridge, AB T1J 4B1, Canada
[3] Univ Western Ontario, Dept Stat & Actuarial Sci, Western Sci Ctr 262, London, ON N6A 5B7, Canada
[4] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1138656, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
SYNTHETIC-APERTURE RADAR; SURFACE-ROUGHNESS; EQUATION MODEL; FIELD-SCALE; RETRIEVAL; IMAGES; BAND; CALIBRATION; PREDICTION;
D O I
10.3390/rs70302752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a flexible, integrated statistical-based modeling approach to improve the robustness of soil moisture data predictions. We apply this approach in exploring the consequence of different choices of leading predictors and covariates. Competing models, predictors, covariates and changing spatial correlation are often ignored in empirical analyses and validation studies. An optimal choice of model and predictors may, however, provide a more consistent and reliable explanation of the high environmental variability and stochasticity of soil moisture observational data. We integrate active polarimetric satellite remote-sensing data (RADARSAT-2, C-band) with ground-based in-situ data across an agricultural monitoring site in Canada. We apply a grouped step-wise algorithm to iteratively select best-performing predictors of soil moisture. Integrated modeling approaches may better account for observed uncertainty and be tuned to different applications that vary in scale and scope, while also providing greater insights into spatial scaling (upscaling and downscaling) of soil moisture variability from the field- to regional scale. We discuss several methodological extensions and data requirements to enable further statistical modeling and validation for improved agricultural decision-support.
引用
收藏
页码:2752 / 2780
页数:29
相关论文
共 47 条
[1]   Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields [J].
Adams, Justin R. ;
Berg, Aaron A. ;
McNairn, Heather ;
Merzouki, Amine .
CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 (01) :1-16
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils [J].
Baghdadi, N ;
King, C ;
Chanzy, A ;
Wigneron, JP .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (20) :4325-4340
[4]   Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and Cross Polarization Using Radar Images and Field Measurements [J].
Baghdadi, Nicolas ;
Abou Chaaya, Jad ;
Zribi, Mehrez .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (01) :14-18
[5]  
Banerjee S., 2003, HIERARCHICAL MODELIN
[6]   Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture [J].
Bryant, R. ;
Moran, M. S. ;
Thoma, D. P. ;
Collins, C. D. Holifield ;
Skirvin, S. ;
Rahman, M. ;
Slocum, K. ;
Starks, P. ;
Bosch, D. ;
Gonzalez Dugo, M. P. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (01) :137-141
[7]   Comments on the Definition of the Q2 Parameter for QSAR Validation [J].
Consonni, Viviana ;
Ballabio, Davide ;
Todeschini, Roberto .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (07) :1669-1678
[8]  
Diggle PJ, 2007, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-48536-2
[9]   MEASURING SOIL-MOISTURE WITH IMAGING RADARS [J].
DUBOIS, PC ;
VANZYL, J ;
ENGMAN, T .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (04) :915-926
[10]   Bayesian multivariate process modeling for prediction of forest attributes [J].
Finley, Andrew O. ;
Banerjee, Sudipto ;
Ek, Alan R. ;
McRoberts, Ronald E. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2008, 13 (01) :60-83