Fields of definition of p-adic covers

被引:0
|
作者
Debes, P [1 ]
Harbater, D
机构
[1] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 1998年 / 498卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns fields of definition and fields of moduli of G-Galois covers of the line over p-adic fields, and more generally over henselian discrete valuation fields. We show that the field of moduli of a p-adic cover will be a field of definition provided that the residue characteristic p does not divide \G\ and that the branch points do not coalesce module p (or in the more general case, that the branch locus is smooth on the special fibre). Hence if p does not divide \G\, then a G-Galois cover of the (Q) over bar-line with field of moduli Q will be defined over a number field contained in Q(p), if the branch points do not coalesce module p. This provides an explicit global-to-local principle for p-adic covers.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条