Plasmonic hybridization between two metallic nanorods

被引:30
作者
Basyooni, Mohamed A. [1 ,2 ]
Ahmed, Ashour M. [1 ]
Shaban, Mohamed [1 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Phys, Nanophoton & Applicat NPA Lab, Salah Salm St, Bani Suwayf 62514, Egypt
[2] Natl Res Inst Astron & Geophys, Solar & Space Res Dept, Space Res Lab, Cairo 11421, Egypt
来源
OPTIK | 2018年 / 172卷
关键词
Plasmonic coupling; Hybridization model; Plasmonic nanorod; Bright mode; Dark mode; DISCRETE DIPOLE APPROXIMATION; GOLD NANORODS; OPTICAL-PROPERTIES; SYMMETRY-BREAKING; FANO RESONANCE; ELECTRON-BEAM; ASPECT-RATIO; NANOPARTICLES; MODES; ABSORPTION;
D O I
10.1016/j.ijleo.2018.07.135
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The study of the plasmonic coupling between metallic nanorods (NRs) is essential for many modern applications. In this paper, we present theoretical studies of scattering cross sections for Au-Au, Au-Ag, and Ag-Ag dimers based on the finite element method (FEM) through COMSOL Multiphysics software. Hybridization model has proposed to explain the plasmon coupling in the different dimers configurations. The single Au nanorod (Au NR) exhibits only a single plasmon resonance, which is red-shifted with increasing the NR length because intra-rod restoring forces are reduced. For asymmetric Au-Au and Au-Ag with end-to-end configuration, two peaks are appearing in the spectrum corresponding to bright (low energy) and dark (high energy) modes. The bright mode interacts strongly with the incident field compared to weak interaction of the dark mode. The bright mode is progressively blue shifted while the dark mode is slightly red shifted as the gap between NRs increases. In the case of Ag-Ag asymmetric configuration, the two NRs are placed perpendicular to each other; the transverse and longitudinal surface plasmon modes are observed. Also, many dark plasmon hybridization coupling modes are illustrated in the range from 100 to 400 nm and ascribed to higher order plasmonic modes due to the dipole-dipole interaction. The coupling interactions between two metallic NRs can lead to significant plasmon shifts and enormous electric field enhancements. These are very useful for environmental detections, nanoantenna, Raman spectroscopy and solar cell. Also, the results of asymmetric Ag-Ag plasmonic produce new plasmon modes in the UV region that open up new opportunities for designing plasmonic devices.
引用
收藏
页码:1069 / 1078
页数:10
相关论文
共 65 条
[1]   Optical properties of coupled metallic nanorods for field-enhanced spectroscopy [J].
Aizpurua, J ;
Bryant, GW ;
Richter, LJ ;
de Abajo, FJG ;
Kelley, BK ;
Mallouk, T .
PHYSICAL REVIEW B, 2005, 71 (23)
[2]   Supramolecular Organic Nanowires as Plasmonic Interconnects [J].
Armao, Joseph J. ;
Domoto, Yuya ;
Umehara, Teruhiko ;
Maaloum, Mounir ;
Contal, Christophe ;
Fuks, Gad ;
Moulin, Emilie ;
Decher, Gero ;
Javahiraly, Nicolas ;
Giuseppone, Nicolas .
ACS NANO, 2016, 10 (02) :2082-2090
[3]   Collective plasmon modes in a compositionally asymmetric nanoparticle dimer [J].
Chen, Fuyi ;
Alemu, Negash ;
Johnston, Roy L. .
AIP ADVANCES, 2011, 1 (03)
[4]   Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam [J].
Chu, Ming-Wen ;
Myroshnychenko, Viktor ;
Chen, Cheng Hsuan ;
Deng, Jing-Pei ;
Mou, Chung-Yuan ;
Javier Garcia de Abajo, F. .
NANO LETTERS, 2009, 9 (01) :399-404
[5]   Exciting Bright and Dark Eigenmodes in Strongly Coupled Asymmetric Metallic Nanoparticle Arrays [J].
Cunningham, Alastair ;
Muehlig, Stefan ;
Rockstuhl, Carsten ;
Buergi, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (33) :17746-17752
[6]   Selective excitation of bright and dark plasmonic resonances of single gold nanorods [J].
Demichel, O. ;
Petit, M. ;
des Francs, G. Colas ;
Bouhelier, A. ;
Hertz, E. ;
Billard, F. ;
de Fornel, F. ;
Cluzel, B. .
OPTICS EXPRESS, 2014, 22 (12) :15088-15096
[7]   Aligned Linear Arrays of Crystalline Nanoparticles [J].
Funston, Alison M. ;
Gomez, Daniel E. ;
Karg, Matthias ;
Vernon, Kristy C. ;
Davis, Timothy J. ;
Mulvaney, Paul .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (12) :1994-2001
[8]   Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters [J].
Giannini, Vincenzo ;
Fernandez-Dominguez, Antonio I. ;
Heck, Susannah C. ;
Maier, Stefan A. .
CHEMICAL REVIEWS, 2011, 111 (06) :3888-3912
[9]   The Dark Side of Plasmonics [J].
Gomez, D. E. ;
Teo, Z. Q. ;
Altissimo, M. ;
Davis, T. J. ;
Earl, S. ;
Roberts, A. .
NANO LETTERS, 2013, 13 (08) :3722-3728
[10]   Strategies for enhancing the sensitivity of plasmonic nanosensors [J].
Guo, Longhua ;
Jackman, Joshua A. ;
Yang, Huang-Hao ;
Chen, Peng ;
Cho, Nam-Joon ;
Kim, Dong-Hwan .
NANO TODAY, 2015, 10 (02) :213-239