A Sparsity-Aware Variable Kernel Width Proportionate Affine Projection Algorithm for Identifying Sparse Systems

被引:4
作者
Jiang, Zhengxiong [1 ]
Li, Yingsong [1 ,2 ]
Huang, Xinqi [1 ]
Jin, Zhan [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, Key Lab Microwave Remote Sensing, Beijing 100190, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 10期
基金
中国博士后科学基金;
关键词
maximum correntropy criterion; l(p)-norm; sparse system identification; impulsive interferences; proportionate affine projection algorithm; STEP-SIZE NLMS; CHANNEL ESTIMATION; PNLMS ALGORITHM; CORRENTROPY; LMS; CONVERGENCE;
D O I
10.3390/sym11101218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A sparsity-aware variable kernel width proportionate affine projection (AP) algorithm is devised for identifying sparse system in impulsive noise environments. For the devised algorithm, the symmetry maximum correntropy criterion (MCC) is employed to develop a new cost function for improving the PAP algorithm, then the variable kernel width and the l(p)-norm-like constraint are incorporated into the cost-function, which is named as l(p)-norm variable kernel width proportionate affine projection (LP-VPAP) algorithm. The devised LP-VPAP algorithm is investigated and verified under impulsive interference environments. Experimental results show that the LP-VPAP gets a faster convergence and provides a lower steady-state performance compared with AP, zero-attracting AP (ZA-AP), reweighted ZA-AP (RZA-AP), proportionate AP (PAP), MCC, variable kernel width MCC (VKW-MCC), and proportionate AP MCC (PAPMCC) algorithms.
引用
收藏
页数:13
相关论文
共 53 条
  • [1] [Anonymous], 2014, INT J ANTENNAS PROPA
  • [2] Benesty J, 2002, INT CONF ACOUST SPEE, P1881
  • [3] On Regularization in Adaptive Filtering
    Benesty, Jacob
    Paleologu, Constantin
    Ciochina, Silviu
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (06): : 1734 - 1742
  • [4] Benesty Jacob, 2001, Advances in Network and Acoustic Echo Cancellation
  • [5] Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing
    Berger, Christian R.
    Zhou, Shengli
    Preisig, James C.
    Willett, Peter
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1708 - 1721
  • [6] Mixture correntropy for robust learning
    Chen, Badong
    Wang, Xin
    Lu, Na
    Wang, Shiyuan
    Cao, Jiuwen
    Qin, Jing
    [J]. PATTERN RECOGNITION, 2018, 79 : 318 - 327
  • [7] Generalized Correntropy for Robust Adaptive Filtering
    Chen, Badong
    Xing, Lei
    Zhao, Haiquan
    Zheng, Nanning
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) : 3376 - 3387
  • [8] Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion
    Chen, Badong
    Wang, Jianji
    Zhao, Haiquan
    Zheng, Nanning
    Principe, Jose C.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1723 - 1727
  • [9] Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion
    Chen, Badong
    Xing, Lei
    Liang, Junli
    Zheng, Nanning
    Principe, Jose C.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (07) : 880 - 884
  • [10] Maximum Correntropy Estimation Is a Smoothed MAP Estimation
    Chen, Badong
    Principe, Jose C.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (08) : 491 - 494