The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis

被引:25
作者
Castro, Rhastin A. D. [1 ,2 ]
Borrell, Sonia [1 ,2 ]
Gagneux, Sebastien [1 ,2 ]
机构
[1] Swiss Trop & Publ Hlth Inst, Socinstr 57, CH-4051 Basel, Switzerland
[2] Univ Basel, Peterspl 1, CH-4001 Basel, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Mycobacterium tuberculosis; evolution; within-host; antimicrobial resistance; virulence; genetic diversity; population dynamics; DRUG-RESISTANCE; MULTIDRUG-RESISTANT; CYSTIC-FIBROSIS; ANTIBIOTIC-RESISTANCE; PSEUDOMONAS-AERUGINOSA; MUTATION-RATE; FITNESS COSTS; IN-VITRO; SUBINHIBITORY CONCENTRATIONS; COMPENSATORY MUTATIONS;
D O I
10.1093/femsre/fuaa071
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
引用
收藏
页数:27
相关论文
共 292 条
  • [31] Borrell S, 2009, INT J TUBERC LUNG D, V13, P1456
  • [32] Borrell Sonia, 2013, Evolution Medicine and Public Health, P65, DOI 10.1093/emph/eot003
  • [33] Brites D., 2020, BIORXIV2020, DOI [10.1101/2020.06.10.141788, DOI 10.1101/2020.06.10.141788]
  • [34] Co-evolution of Mycobacterium tuberculosis and Homo sapiens
    Brites, Daniela
    Gagneux, Sebastien
    [J]. IMMUNOLOGICAL REVIEWS, 2015, 264 (01) : 6 - 24
  • [35] Old and new selective pressures on Mycobacterium tuberculosis
    Brites, Daniela
    Gagneux, Sebastien
    [J]. INFECTION GENETICS AND EVOLUTION, 2012, 12 (04) : 678 - 685
  • [36] The in vitro mechanisms of isoniazid and ethionamide resistance poorly reflect those in vivo in Mycobacterium tuberculosis
    Brossier, Florence
    Cambau, Emmanuelle
    Tessier, Emilie
    Jarlier, Vincent
    Sougakoff, Wladimir
    [J]. TUBERCULOSIS, 2016, 101 : 144 - 145
  • [37] Heterogeneity in tuberculosis
    Cadena, Anthony M.
    Fortune, Sarah M.
    Flynn, JoAnne L.
    [J]. NATURE REVIEWS IMMUNOLOGY, 2017, 17 (11) : 691 - 702
  • [38] Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    Campbell, EA
    Korzheva, N
    Mustaev, A
    Murakami, K
    Nair, S
    Goldfarb, A
    Darst, SA
    [J]. CELL, 2001, 104 (06) : 901 - 912
  • [39] TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities
    Carey, Allison F.
    Rock, Jeremy M.
    Krieger, Inna V.
    Chase, Michael R.
    Fernandez-Suarez, Marta
    Gagneux, Sebastien
    Sacchettini, James C.
    Ioerger, Thomas R.
    Fortune, Sarah M.
    [J]. PLOS PATHOGENS, 2018, 14 (03)
  • [40] Evolution and transmission of drug-resistant tuberculosis in a Russian population
    Casali, Nicola
    Nikolayevskyy, Vladyslav
    Balabanova, Yanina
    Harris, Simon R.
    Ignatyeva, Olga
    Kontsevaya, Irina
    Corander, Jukka
    Bryant, Josephine
    Parkhill, Julian
    Nejentsev, Sergey
    Horstmann, Rolf D.
    Brown, Timothy
    Drobniewski, Francis
    [J]. NATURE GENETICS, 2014, 46 (03) : 279 - +