Wave-particle interactions in the equatorial source region of whistler-mode emissions

被引:50
|
作者
Santolik, O. [1 ,9 ]
Gurnett, D. A. [6 ]
Pickett, J. S. [6 ]
Grimald, S. [5 ]
Decreau, P. M. E. [3 ]
Parrot, M. [3 ]
Cornilleau-Wehrlin, N. [2 ,10 ]
Mazouz, F. El-Lemdani [4 ]
Schriver, D. [8 ]
Meredith, N. P. [7 ]
Fazakerley, A. [5 ]
机构
[1] Inst Atmospher Phys, Dept Space Phys, Prague 14131 4, Czech Republic
[2] CNRS, Stn Radioastron Nancay, Observ Paris, F-18330 Nancy, France
[3] CNRS, LPC2E, F-45071 Orleans, France
[4] CNRS, Lab Atmospheres Milieux, Paris, France
[5] Mullard Space Sci Lab, Holmbury RH5 6NT, England
[6] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[7] British Antarctic Survey, Nat Environm Res Council, Div Phys Sci, Cambridge CB3 0ET, England
[8] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[9] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[10] CNRS, Plasma Phys Lab, Palaiseau, France
关键词
CHORUS EMISSIONS; MAGNETOSPHERIC CHORUS; ENERGETIC ELECTRONS; VLF EMISSIONS; CLUSTER; ACCELERATION; HISS; PROPAGATION; FIELD;
D O I
10.1029/2009JA015218
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Wave-particle interactions can play a key role in the process of transfer of energy between different electron populations in the outer Van Allen radiation belt. We present a case study of wave-particle interactions in the equatorial source region of whistler-mode emissions. We select measurements of the Cluster spacecraft when these emissions are observed in the form of random hiss with only occasional discrete chorus wave packets, and where the wave propagation properties are very similar to previously analyzed cases of whistler-mode chorus. We observe a positive divergence of the Poynting flux at minima of the magnetic field modulus along the magnetic field lines, indicating the central position of the source. In this region we perform a linear stability analysis based on the locally measured electron phase space densities. We find two unstable electron populations. The first of them consists of energy-dispersed and highly anisotropic injected electrons at energies of a few hundreds eV to a few keV, with the perpendicular temperature more than 10 times higher than the parallel temperature with respect to the magnetic field line. Another unstable population is formed by trapped electrons at energies above 10 keV. We show that the injected electrons at lower energies can be responsible for a part of the waves that propagate obliquely at frequencies above one half of the electron cyclotron frequency. Our model of the trapped electrons at higher energies gives insufficient growth of the waves below one half of the electron cyclotron frequency and a nonlinear generation mechanism might be necessary to explain their presence even in this simple case.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Ray-tracing simulations of whistler-mode wave propagation in different rescaled dipole magnetic fields
    Ke, YangGuang
    Lu, QuanMing
    Gao, XinLiang
    Chen, HuaYue
    Chen, Rui
    EARTH AND PLANETARY PHYSICS, 2022, 6 (06) : 555 - 562
  • [22] Significance of Wave-Particle Interaction Analyzer for direct measurements of nonlinear wave-particle interactions
    Katoh, Y.
    Kitahara, M.
    Kojima, H.
    Omura, Y.
    Kasahara, S.
    Hirahara, M.
    Miyoshi, Y.
    Seki, K.
    Asamura, K.
    Takashima, T.
    Ono, T.
    ANNALES GEOPHYSICAE, 2013, 31 (03) : 503 - 512
  • [23] The effect of wave frequency drift on the electron nonlinear resonant interaction with whistler-mode waves
    Artemyev, Anton V. V.
    Albert, Jay M. M.
    Neishtadt, Anatoli I. I.
    Mourenas, Didier
    PHYSICS OF PLASMAS, 2023, 30 (01)
  • [24] Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS
    Li, Wen
    Bortnik, J.
    Thorne, R. M.
    Cully, C. M.
    Chen, L.
    Angelopoulos, V.
    Nishimura, Y.
    Tao, J. B.
    Bonnell, J. W.
    LeContel, O.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (04) : 1461 - 1471
  • [25] Aspects of Nonlinear Wave-Particle Interactions
    Albert, Jay M.
    Tao, Xin
    Bortnik, Jacob
    DYNAMICS OF THE EARTH'S RADIATION BELTS AND INNER MAGNETOSPHERE, 2012, 199 : 255 - +
  • [26] An explanation of the observation of whistler-mode chorus emissions at the Indian Antarctic station, Maitri (L=4.5)
    Singh, A. K.
    Singh, S. B.
    Patel, R. P.
    PHYSICA SCRIPTA, 2010, 81 (03)
  • [27] Backward-propagating source as a component of rising tone whistler-mode chorus generation
    Harid, Vijay
    Golkowski, Mark
    Hosseini, Poorya
    Kim, Hoyoung
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [28] Simulation of Bounce Resonance ULF Wave-Particle Interactions
    Rankin, R.
    Wang, C.
    Sydorenko, D.
    Wang, Y.
    Zong, Q. -G.
    Zhou, X.
    2016 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (URSI AP-RASC), 2016, : 956 - 959
  • [29] Whistler-mode waves inside flux pileup region: Structured or unstructured?
    Fu, H. S.
    Cao, J. B.
    Cully, C. M.
    Khotyaintsev, Y. V.
    Vaivads, A.
    Angelopoulos, V.
    Zong, Q. -G.
    Santolik, O.
    Macusova, E.
    Andre, M.
    Liu, W. L.
    Lu, H. Y.
    Zhou, M.
    Huang, S. Y.
    Zhima, Z.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (11) : 9089 - 9100
  • [30] Unified View of Nonlinear Wave Structures Associated with Whistler-Mode Chorus
    An, Xin
    Li, Jinxing
    Bortnik, Jacob
    Decyk, Viktor
    Kletzing, Craig
    Hospodarsky, George
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)