On the determinant of one-dimensional elliptic boundary value problems

被引:27
作者
Lesch, M [1 ]
Tolksdorf, J [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
D O I
10.1007/s002200050342
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the zeta-regularized determinant of elliptic boundary value problems on a line segment. Our framework is applicable for separated and non-separated boundary conditions.
引用
收藏
页码:643 / 660
页数:18
相关论文
共 11 条
[1]   REGULAR SINGULAR ASYMPTOTICS [J].
BRUNING, J ;
SEELEY, R .
ADVANCES IN MATHEMATICS, 1985, 58 (02) :133-148
[2]  
Bruning J, 1996, J REINE ANGEW MATH, V474, P25
[3]   ON THE DETERMINANT OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS ON A LINE SEGMENT [J].
BURGHELEA, D ;
FRIEDLANDER, L ;
KAPPELER, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) :3027-3038
[4]   ON THE DETERMINANT OF ELLIPTIC DIFFERENTIAL AND FINITE-DIFFERENCE OPERATORS IN VECTOR-BUNDLES OVER S1 [J].
BURGHELEA, D ;
FRIEDLANDER, L ;
KAPPELER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :1-18
[5]   REGULARIZED DETERMINANTS FOR PSEUDODIFFERENTIAL-OPERATORS IN VECTOR-BUNDLES OVER S(1) [J].
BURGHELEA, D ;
FRIEDLANDER, L ;
KAPPELER, T .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 16 (04) :496-513
[6]  
Lesch M., 1997, Teubner-Texte zur Mathematik, V136
[7]  
LESCH M, IN PRESS MATH NACHR
[8]   R-TORSION AND LAPLACIAN ON RIEMANNIAN MANIFOLDS [J].
RAY, DB ;
SINGER, IM .
ADVANCES IN MATHEMATICS, 1971, 7 (02) :145-&
[9]   RESOLVENT OF AN ELLIPTIC BOUNDARY PROBLEM [J].
SEELEY, R .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (04) :889-&
[10]   ANALYTIC EXTENSION OF TRACE ASSOCIATED WITH ELLIPTIC BOUNDARY PROBLEMS [J].
SEELEY, RT .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (04) :963-&