A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material

被引:66
作者
Ullah, Shaheed [1 ]
Khan, Inayat Ali [1 ]
Choucair, Mohammad [2 ]
Badshah, Amin [1 ]
Khan, Ishtiaq [1 ]
Nadeem, Muhammad Arif [1 ]
机构
[1] Quaid I Azam Univ, Dept Chem, Catalysis & Nanomat Lab 27, Islamabad 45320, Pakistan
[2] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
关键词
capacitance; polyfurfuryl alcohol; nanoribbons; nanocomposite; METAL-ORGANIC FRAMEWORK; ELECTROCHEMICAL STORAGE; TRIVALENT CHROMIUM; REACTION-MECHANISM; CARBON NANOTUBES; SUPERCAPACITORS; ENERGY; OXIDATION; SEPARATION; REDUCTION;
D O I
10.1016/j.electacta.2015.04.179
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Novel graphitic material containing chromium oxide (Cr2O3) nanoribbons is obtained by carbonizing a mixture of polyfurfuryl alcohol and MIL-101(Cr) at 900 degrees C. Morphological, structural, and chemical analysis of the product is carried out with HR-TEM, SEM, XPS, XRD, and BET surface area. The maximum BET surface area recorded for the nanocomposite is 438 m(2) g(-1). The nanocomposite exhibits a specific capacitance as high as 300 F g(-1) at 2 mV s(-1) and 291 F g(-1) at 0.25 A g(-1), and presents 95.5% long-term cycling stability over 3000 cycles. The pseudo-capacitive role of Cr2O3 nanoribbons is found to be important towards total capacitance of nanocomposite material. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Furfuryl alcohol polymerization in H-Y confined spaces: Reaction mechanism and structure of carbocationic intermediates [J].
Bertarione, S. ;
Bonino, F. ;
Cesano, F. ;
Damin, A. ;
Scarano, D. ;
Zecchina, A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (09) :2580-2589
[3]   X-ray photoelectron spectroscopy studies of chromium compounds [J].
Biesinger, MC ;
Brown, C ;
Mycroft, JR ;
Davidson, RD ;
McIntyre, NS .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (12) :1550-1563
[4]   Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization [J].
Chu, A ;
Braatz, P .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :236-246
[5]  
Conway B.E., 1999, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications
[6]   Supercapacitors using carbon nanotubes films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :1487-1494
[7]   A chromium terephthalate-based solid with unusually large pore volumes and surface area [J].
Férey, G ;
Mellot-Draznieks, C ;
Serre, C ;
Millange, F ;
Dutour, J ;
Surblé, S ;
Margiolaki, I .
SCIENCE, 2005, 309 (5743) :2040-2042
[8]   Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials [J].
Fisher, Robert A. ;
Watt, Morgan R. ;
Ready, W. Jud .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (10) :M3170-M3177
[9]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418
[10]   Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2002, 40 (10) :1775-1787