A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material

被引:64
作者
Ullah, Shaheed [1 ]
Khan, Inayat Ali [1 ]
Choucair, Mohammad [2 ]
Badshah, Amin [1 ]
Khan, Ishtiaq [1 ]
Nadeem, Muhammad Arif [1 ]
机构
[1] Quaid I Azam Univ, Dept Chem, Catalysis & Nanomat Lab 27, Islamabad 45320, Pakistan
[2] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
关键词
capacitance; polyfurfuryl alcohol; nanoribbons; nanocomposite; METAL-ORGANIC FRAMEWORK; ELECTROCHEMICAL STORAGE; TRIVALENT CHROMIUM; REACTION-MECHANISM; CARBON NANOTUBES; SUPERCAPACITORS; ENERGY; OXIDATION; SEPARATION; REDUCTION;
D O I
10.1016/j.electacta.2015.04.179
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Novel graphitic material containing chromium oxide (Cr2O3) nanoribbons is obtained by carbonizing a mixture of polyfurfuryl alcohol and MIL-101(Cr) at 900 degrees C. Morphological, structural, and chemical analysis of the product is carried out with HR-TEM, SEM, XPS, XRD, and BET surface area. The maximum BET surface area recorded for the nanocomposite is 438 m(2) g(-1). The nanocomposite exhibits a specific capacitance as high as 300 F g(-1) at 2 mV s(-1) and 291 F g(-1) at 0.25 A g(-1), and presents 95.5% long-term cycling stability over 3000 cycles. The pseudo-capacitive role of Cr2O3 nanoribbons is found to be important towards total capacitance of nanocomposite material. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 45 条
  • [1] [Anonymous], 1999, ELECTROCHEMICAL SUPE
  • [2] Furfuryl alcohol polymerization in H-Y confined spaces: Reaction mechanism and structure of carbocationic intermediates
    Bertarione, S.
    Bonino, F.
    Cesano, F.
    Damin, A.
    Scarano, D.
    Zecchina, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (09) : 2580 - 2589
  • [3] X-ray photoelectron spectroscopy studies of chromium compounds
    Biesinger, MC
    Brown, C
    Mycroft, JR
    Davidson, RD
    McIntyre, NS
    [J]. SURFACE AND INTERFACE ANALYSIS, 2004, 36 (12) : 1550 - 1563
  • [4] Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization
    Chu, A
    Braatz, P
    [J]. JOURNAL OF POWER SOURCES, 2002, 112 (01) : 236 - 246
  • [5] Conway B.E., 1999, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications
  • [6] Supercapacitors using carbon nanotubes films by electrophoretic deposition
    Du, Chunsheng
    Pan, Ning
    [J]. JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1487 - 1494
  • [7] A chromium terephthalate-based solid with unusually large pore volumes and surface area
    Férey, G
    Mellot-Draznieks, C
    Serre, C
    Millange, F
    Dutour, J
    Surblé, S
    Margiolaki, I
    [J]. SCIENCE, 2005, 309 (5743) : 2040 - 2042
  • [8] Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials
    Fisher, Robert A.
    Watt, Morgan R.
    Ready, W. Jud
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (10) : M3170 - M3177
  • [9] Supercapacitors based on conducting polymers/nanotubes composites
    Frackowiak, E
    Khomenko, V
    Jurewicz, K
    Lota, K
    Béguin, F
    [J]. JOURNAL OF POWER SOURCES, 2006, 153 (02) : 413 - 418
  • [10] Electrochemical storage of energy in carbon nanotubes and nanostructured carbons
    Frackowiak, E
    Béguin, F
    [J]. CARBON, 2002, 40 (10) : 1775 - 1787