Integrability of superharmonic functions, uniform domains, and Holder domains

被引:3
作者
Gotoh, Y [1 ]
机构
[1] Natl Def Acad, Dept Math, Yokosuka, Kanagawa 239, Japan
关键词
BMO; quasihyperbolic metric; uniform domain; Holder domain; superharmonic function; harmonic function;
D O I
10.1090/S0002-9939-99-04670-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S+(D) denote the space of all positive superharmonic functions on a domain D subset of R-n. Lindqvist showed that log S+(D) is a bounded subset of BMO(D). Using this, we give a characterization of finitely connected 2-dimensional uniform domains and remarks on Holder domains.
引用
收藏
页码:1443 / 1451
页数:9
相关论文
共 12 条
[2]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[3]  
GOTOH Y, IN PRESS J ANAL MATH
[4]   GLOBAL INTEGRABILITY AND DEGENERATE QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
LINDQVIST, P .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 61 :283-292
[5]   THE INTEGRABILITY OF SUPERHARMONIC FUNCTIONS ON LIPSCHITZ-DOMAINS [J].
MAEDA, FY ;
SUZUKI, N .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :270-278
[6]  
MASUMOTO M, 1992, J LOND MATH SOC, V45, P62
[7]   INTEGRABILITY OF SUPERHARMONIC FUNCTIONS ON HOLDER DOMAINS OF THE PLANE [J].
MASUMOTO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :1083-1088
[8]  
REIMANN HM, 1975, LECT NOTES MATH, V489
[9]   EXPONENTIAL INTEGRABILITY OF THE QUASI-HYPERBOLIC METRIC ON HOLDER DOMAINS [J].
SMITH, W ;
STEGENGA, DA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1991, 16 (02) :345-360
[10]   Superharmonic functions in Holder domains [J].
Stegenga, DA ;
Ullrich, DC .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1539-1556