Sobolev Orthogonal Polynomials Associated with Chebyshev Polynomials of the First Kind and the Cauchy Problem for Ordinary Differential Equations

被引:2
作者
Sharapudinov, I. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Dagestan Sci Ctr, Makhachkala 367032, Russia
[2] Russian Acad Sci, Vladikavkaz Sci Ctr, Southern Math Inst, Vladikavkaz 362027, Russia
基金
俄罗斯基础研究基金会;
关键词
MIXED SERIES; APPROXIMATION PROPERTIES; LAGUERRE-POLYNOMIALS; RESPECT;
D O I
10.1134/S0012266118120078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the polynomials T-r,T-n(x) (n = 0, 1,...) generated by Chebyshev polynomials T-n(x) and forming a Sobolev orthonormal system with respect to the inner productf, g = r- 1 .= 0 f(.)(- 1) g(.)(- 1) + 1 - 1 f(r)(x) g(r)(x) mu(x) dx,, where (x) = 2(-1)(1 - x(2))(-1/2). It is shown that the Fourier sums in the polynomials T-r,T-n(x) (n = 0, 1,...) give a convenient and efficient tool for approximately solving the Cauchy problem for ordinary differential equations.
引用
收藏
页码:1602 / 1619
页数:18
相关论文
共 32 条
[1]  
AKHIEZER NI, 1965, LEKTSII TEORII APPRO
[2]  
[Anonymous], 2000, SIAM
[3]  
[Арушанян О.Б. Arushanyan O.B.], 2013, [Вычислительные методы и программирование: новые вычислительные технологии, Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii], V14, P203
[4]  
Arushanyan O.B., 1983, SIB ELEKT MAT IZV, V7, P122
[5]  
Arushanyan O.B., 2014, SIB ELEKT MAT IZV, P517
[6]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[7]  
Kwon K.H., 1995, ANN NUMERICAL MATH, V2, P289
[8]   Sobolev orthogonal polynomials and second-order differential equations [J].
Kwon, KH ;
Littlejohn, LL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) :547-594
[9]   RELATIVE ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO A DISCRETE SOBOLEV INNER-PRODUCT [J].
LOPEZ, G ;
MARCELLAN, F ;
VANASSCHE, W .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (01) :107-137
[10]  
Lukomskii D. S., 2016, P 18 INT SAR SCH CON, P171