Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds

被引:29
作者
Deshmukh, Sharief [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Almost contact metric manifold; Sasakian manifold; trans-Sasakian manifold; Poisson equation;
D O I
10.1007/s00009-015-0666-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is shown that for a 3-dimensional compact simply connected trans-Sasakian manifold of type , the smooth functions satisfy the Poisson equations , and , respectively, if and only if it is homothetic to a Sasakian manifold. We also find a necessary and sufficient condition for a connected 3-dimensional trans-Sasakian manifold of type in terms of a differential equation satisfied by the smooth function to be homothetic to a Sasakian manifold.
引用
收藏
页码:2951 / 2958
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1964, Tohoku Math. J.
[2]  
[Anonymous], 2008, Extracta Math.
[3]  
Blair D.E., 1990, Publications Matematiques, V34, P199
[4]  
Blair DE., 1976, Contact manifolds in Riemannian geometry
[5]  
De U. C., 2003, Kyungpook Mathematical Journal, V43, P247
[6]   Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature [J].
Deshmukh, S ;
Al-Eid, A .
JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (04) :589-606
[7]   A note on trans-Sasakian manifolds [J].
Deshmukh, Sharief ;
Tripathi, Mukut Mani .
MATHEMATICA SLOVACA, 2013, 63 (06) :1361-1370
[8]  
FUJIMOTO A, 1974, TENSOR, V28, P43
[9]  
Gray A., 1980, Annali di Matematica Pura ed Applicata, V123, P35, DOI [DOI 10.1007/BF01796539, 10.1007/BF01796539]
[10]  
Kenmotsu K., 1972, TOHOKU MATH J, V24, P93