Nonvanishing boundary condition for the mKdV hierarchy and the Gardner equation

被引:6
作者
Gomes, J. F. [1 ]
Franca, Guilherme S. [1 ]
Zimerman, A. H. [1 ]
机构
[1] IFT UNESP, BR-01140070 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
DE-VRIES EQUATION; NONLINEAR LATTICE; WAVE-PROPAGATION; TAU-FUNCTIONS; TRANSFORMATION; SOLITONS;
D O I
10.1088/1751-8113/45/1/015207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Kac-Moody algebra construction for the integrable hierarchy containing the Gardner equation is proposed. Solutions are systematically constructed by employing the dressing method and deformed vertex operators, which take into account the nonvanishing boundary value problem for the modified Korteweg-de Vries (mKdV) hierarchy. Explicit examples are given and besides the usual KdV-like solitons, our solutions contemplate the large amplitude table-top solitons, kinks, dark solitons, breathers and wobbles.
引用
收藏
页数:14
相关论文
共 22 条
[1]  
Aratyn H, 2004, SYMPHYS 11 P 11 INT
[2]  
Aratyn H, 2000, P NATO ADV RES WORKS
[3]   AFFINE SOLITONS - A RELATION BETWEEN TAU-FUNCTIONS, DRESSING AND BACKLUND-TRANSFORMATIONS [J].
BABELON, O ;
BERNARD, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (03) :507-543
[4]   AN EXPLICIT EXPRESSION OF THE DARK N-SOLITON SOLUTION OF THE MKDV EQUATION BY MEANS OF THE DARBOUX TRANSFORMATION [J].
CHEN, ZY ;
HUANG, NN ;
LIU, ZZ ;
XIAO, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06) :1365-1374
[5]   Wobbles and other kink-breather solutions of the sine-Gordon model [J].
Ferreira, L. A. ;
Piette, Bernard ;
Zakrzewski, Wojtek J. .
PHYSICAL REVIEW E, 2008, 77 (03)
[6]   Tau-functions and dressing transformations for zero-curvature affine integrable equations [J].
Ferreira, LA ;
Miramontes, JL ;
Guillen, JS .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :882-901
[7]   Negative even grade mKdV hierarchy and its soliton solutions [J].
Gomes, J. F. ;
Franca, G. Starvaggi ;
de Melo, G. R. ;
Zimerman, A. H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
[8]   Generation of large-amplitude solitons in the extended Korteweg-de Vries equation [J].
Grimshaw, R ;
Pelinovsky, D ;
Pelinovsky, E ;
Slunyaev, A .
CHAOS, 2002, 12 (04) :1070-1076
[9]   Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity [J].
Grimshaw, R. ;
Slunyaev, A. ;
Pelinovsky, E. .
CHAOS, 2010, 20 (01)
[10]   Marchenko equation for dark soliton solutions of the mKdV equation [J].
Huang, NN ;
Chen, ZY ;
Yue, H .
PHYSICS LETTERS A, 1996, 221 (3-4) :167-173