PowerCool: Simulation of Cooling and Powering of 3D MPSoCs with Integrated Flow Cell Arrays

被引:14
作者
Andreev, Artem Aleksandrovich [1 ]
Sridhar, Arvind [2 ]
Sabry, Mohamed M. [3 ]
Zapater, Marina [1 ]
Ruch, Patrick [2 ]
Michel, Bruno [2 ]
Atienza, David [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, ESL, CH-1015 Lausanne, Switzerland
[2] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[3] Stanford Univ, Robust Syst Grp, Stanford, CA 94305 USA
基金
瑞士国家科学基金会;
关键词
3D MPSoCs; thermal modeling; liquid cooling; electrochemical flow cell; BATTERY; DESIGN; ENERGY;
D O I
10.1109/TC.2017.2695179
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Integrated Flow-Cell Arrays (FCAs) represent a combination of integrated liquid cooling and on-chip power generation, converting chemical energy of the flowing electrolyte solutions to electrical energy. The FCA technology provides a promising way to address both heat removal and power delivery issues in 3D Multiprocessor Systems-on-Chips (MPSoCs). In this paper we motivate the benefits of FCA in 3D MPSoCs via a qualitative analysis and explore the capabilities of the proposed technology using our extended PowerCool simulator. PowerCool is a tool that performs combined compact thermal and electrochemical simulation of 3D MPSoCs with inter-tier FCA-based cooling and power generation. We validate our electrochemical model against experimental data obtained using a micro-scale FCA, and extend PowerCool with a compact thermal model (3D-ICE) and subthreshold leakage estimation. We show the sensitivity of the FCA cooling and power generation on the design-time (FCA geometry) and run-time (fluid inlet temperature, flow rate) parameters. Our results show that we can optimize the FCA to keep maximum chip temperature below 95 degrees C for an average chip power consumption of 50 W/cm(2) while generating up to 3.6 W per cm(2) of chip area.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 30 条
[22]  
Narendra S.G., 2005, LEAKAGE NANOMETER CM
[23]  
Riekstin Ana Carolina, 2014, ACM SIGOPS Operating Systems Review, V48, P39
[24]  
Ruch Patrick, 2013, 2013 International Conference on High Performance Computing & Simulation (HPCS), P161, DOI 10.1109/HPCSim.2013.6641408
[25]   Toward five-dimensional scaling: How density improves efficiency in future computers [J].
Ruch, P. ;
Brunschwiler, T. ;
Escher, W. ;
Paredes, S. ;
Michel, B. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2011, 55 (05)
[26]   Progress in Flow Battery Research and Development [J].
Skyllas-Kazacos, M. ;
Chakrabarti, M. H. ;
Hajimolana, S. A. ;
Mjalli, F. S. ;
Saleem, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :R55-R79
[27]  
Sridhar A, 2014, ICCAD-IEEE ACM INT, P527, DOI 10.1109/ICCAD.2014.7001401
[28]   3D-ICE: A Compact Thermal Model for Early-Stage Design of Liquid-Cooled ICs [J].
Sridhar, Arvind ;
Vincenzi, Alessandro ;
Atienza, David ;
Brunschwiler, Thomas .
IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (10) :2576-2589
[29]  
Stanley-Marbell P., 2011, 2011 International Symposium on Low Power Electronics and Design (ISLPED 2011), P51, DOI 10.1109/ISLPED.2011.5993603
[30]  
Wulf W. A., 1995, Computer Architecture News, V23, P20, DOI 10.1145/216585.216588